Skip to main content
Log in

Tilting of adjacent laser-induced liquid jets

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The effects of time delay and spatial separation between two adjacent laser pulses in blister-actuated laser-induced forward transfer are studied experimentally and computationally. Each laser pulse creates a blister that expands into a liquid film, forming liquid jets to transfer material from a donor substrate to an acceptor substrate. For a fixed separation between the two laser pulses, time-resolved imaging reveals a tilting of the second liquid jet toward or away from the first jet, depending on the time delay between pulses. Simulations of the same process reveal that the first jet perturbs the ink−air interface around it, and the initial angle of the liquid−air interface below the second laser pulse is shown to be a good predictor of the angle of the second jet. The time evolution of the initial interface angle at a fixed separation is then investigated analytically in terms of a viscously damped cylindrical capillary wave, initiating once the jet retracts or pinches off. This two-jet setup can be considered as a model system for high repetition rate printing, so these results reveal limits on the repetition rate and separation between pulses for LIFT such that materials are printed in desired patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Antkowiak A, Bremond N, Le Dizes S, Villermaux E (2007) Short-term dynamics of a density interface following an impact. J Fluid Mech 577:241–250

    Article  MATH  Google Scholar 

  • Arnold CB, Serra P, Piqué A (2007) Laser direct-write techniques for printing of complex materials. MRS Bull 32:23–31

    Article  Google Scholar 

  • Birnbaum A, Kim H, Charipar N, Piqué A (2010) Laser printing of multi-layered polymer/metal heterostructures for electronic and mems devices. Appl Phys A 99:711–716

    Article  Google Scholar 

  • Biver E, Rapp L, Alloncle AP, Delaporte P (2014) Multi-jets formation using laser forward transfer. Appl Surf Sci 302:153–158 e-MRS 2013 Symposium V: Laser Material Interactions for Micro- and Nano- Applications 2731 May 2013, Strasbourg (France)

  • Bohandy J, Kim BF, Adrian FJ (1986) Metal-deposition from a supported metal-film using an excimer laser. J Appl Phys 60:1538–1539

    Article  Google Scholar 

  • Boutopoulos C, Alloncle A, Zergioti I, Delaporte P (2013a) A time-resolved shadowgraphic study of laser transfer of silver nanoparticle ink. Appl Surf Sci 278:71–76

    Article  Google Scholar 

  • Boutopoulos C, Kalpyris I, Serpetzoglou E, Zergioti I (2013b) Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality. Microfluid Nanofluid 16:493–500

    Article  Google Scholar 

  • Brown MS, Brasz CF, Ventikos Y, Arnold CB (2012) Impulsively actuated jets from thin liquid films for high-resolution printing applications. J Fluid Mech 709:341–370

    Article  MATH  MathSciNet  Google Scholar 

  • Brown MS, Kattamis NT, Arnold CB (2010) Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer. J Appl Phys 107:083103

    Article  Google Scholar 

  • Brown MS, Kattamis NT, Arnold CB (2011) Time-resolved dynamics of laser-induced micro-jets from thin liquid films. Microfluid Nanofluid, pp 1–9

  • Duocastella M, Fernández-Pradas JM, Morenza JL, Serra P (2009) Time-resolved imaging of the laser forward transfer of liquids. J Appl Phys 106:084907

    Article  Google Scholar 

  • Duocastella M, Kim H, Serra P, Piqué A (2012) Optimization of laser printing of nanoparticle suspensions for microelectronic applications. Appl Phys A 106:471–478

    Article  Google Scholar 

  • Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69:865–929

    Article  MATH  Google Scholar 

  • Hennig G, Baldermann T, Nussbaum C, Rossier M, Brockelt A, Schuler L, Hochstein G (2012) Lasersonic\({\textregistered }\) lift process for large area digital printing. J Laser Micro/Nanoeng 7:289–305

    Article  Google Scholar 

  • Kattamis NT, Brown MS, Arnold CB (2011a) Finite element analysis of blister formation in laser-induced forward transfer. J Mater Res 26:2438–2449

    Article  Google Scholar 

  • Kattamis NT, McDaniel ND, Bernhard S, Arnold CB (2009) Laser direct write printing of sensitive and robust light emitting organic molecules. Appl Phys Lett 94:103306

    Article  Google Scholar 

  • Kattamis NT, McDaniel ND, Bernhard S, Arnold CB (2011b) Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device. Org Electron 12:1152–1158

    Article  Google Scholar 

  • Kattamis NT, Purnick PE, Weiss R, Arnold CB (2007) Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Appl Phys Lett 91:171120

    Article  Google Scholar 

  • Kim H, Auyeung RCY, Lee SH, Huston AL, Piqué A (2010) Laser-printed interdigitated ag electrodes for organic thin film transistors. J Phys D: Appl Phys 43:085101

    Article  Google Scholar 

  • Kim H, Auyeung RCY, Piqué A (2007) Laser-printed thick-film electrodes for solid-state rechargeable li-ion microbatteries. J Power Sources 165:413–419

    Article  Google Scholar 

  • Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, Zychlinski D, Schambach A, Reimers K, Vogt PM, Chichkov B (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109:1855–1863

    Article  Google Scholar 

  • Kyrkis K, Andreadaki A, Papazoglou D, Zergioti I (2006) Recent advances in laser processing of materials, chapter 7. Elsevier, Amsterdam, pp 213–241

  • Lighthill J (1978) Waves in fluids. Cambridge Univ, Cambridge, p 504

    MATH  Google Scholar 

  • Palla-Papavlu A, Crdoba C, Patrascioiu A, Fernndez-Pradas J, Morenza J, Serra P (2013) Deposition and characterization of lines printed through laser-induced forward transfer. Appl Phys A 110:751–755

    Article  Google Scholar 

  • Palla-Papavlu A, Paraico I, Shaw-Stewart J, Dinca V, Savopol T, Kovacs E, Lippert T, Wokaun A, Dinescu M (2011) Liposome micropatterning based on laser-induced forward transfer. Appl Phys A 102:651–659

    Article  Google Scholar 

  • Patrascioiu A, Fernndez-Pradas J, Palla-Papavlu A, Morenza J, Serra P (2014) Laser-generated liquid microjets: correlation between bubble dynamics and liquid ejection. Microfluid Nanofluid 16:55–63

    Article  Google Scholar 

  • Peters IR, Tagawa Y, Oudalov N, Sun C, Prosperetti A, Lohse D, van der Meer D (2013) Highly focused supersonic microjets: numerical simulations. J Fluid Mech 719:587–605

    Article  MATH  Google Scholar 

  • Plateau J (1873) Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires. Gauthier-Villars

  • Popinet S (2003) Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries. J Comput Phys 190:572–600

    Article  MATH  MathSciNet  Google Scholar 

  • Popinet S (2009) An accurate adaptive solver for surface-tension-driven interfacial flows. J Comput Phys 228:5838–5866

    Article  MATH  MathSciNet  Google Scholar 

  • Rapp L, Ailuno J, Alloncle AP, Delaporte P (2011) Pulsed-laser printing of silver nanoparticles ink: control of morphological properties. Opt Express 19:21563–21574

    Article  Google Scholar 

  • Rayleigh L (1878) On the instability of jets. Proc Lond Math Soc 10:4–13

    Article  Google Scholar 

  • Ringeisen BR, Othon CM, Barron JA, Young D, Spargo BJ (2006) Jet-based methods to print living cells. Biotechnol J 1:930–948

    Article  Google Scholar 

  • Schiele NR, Corr DT, Huang Y, Raof NA, Xie Y, Chrisey DB (2010) Laser-based direct-write techniques for cell printing. Biofabrication 2:032001

    Article  Google Scholar 

  • Shaw-Stewart JRH, Mattle T, Lippert TK, Nagel M, Nesch FA, Wokaun A (2013) The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer. J Appl Phys 113:043104

    Article  Google Scholar 

  • Tagawa Y, Oudalov N, Visser CW, Peters IR, van der Meer D, Sun C, Prosperetti A, Lohse D (2012) Highly focused supersonic microjets. Phys Rev X 2:031002

    Google Scholar 

  • Thoroddsen ST, Takehara K, Etoh TG, Ohl CD (2009) Spray and microjets produced by focusing a laser pulse into a hemispherical drop. Phys Fluids 21:112101

    Article  Google Scholar 

  • Unger C, Gruene M, Koch L, Koch J, Chichkov B (2011) Time-resolved imaging of hydrogel printing via laser-induced forward transfer. Appl Phys A 103:271–277

    Article  Google Scholar 

  • Yan J, Huang Y, Xu C, Chrisey DB (2012) Effects of fluid properties and laser fluence on jet formation during laser direct writing of glycerol solution. J Appl Phys 112:083105

    Article  Google Scholar 

  • Zergioti I (2013) Laser printing of organic electronics and sensors. J Laser Micro/Nanoeng 8:30–34

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Guido Hennig, Howard Stone, and Romain Fardel for helpful discussions and gratefully acknowledge financial support from the NSF MRSEC program through the Princeton Center for Complex Materials (Grant DMR-0819860).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig B. Arnold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brasz, C.F., Yang, J.H. & Arnold, C.B. Tilting of adjacent laser-induced liquid jets. Microfluid Nanofluid 18, 185–197 (2015). https://doi.org/10.1007/s10404-014-1429-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1429-4

Keywords

Navigation