Skip to main content
Log in

Liposome micropatterning based on laser-induced forward transfer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The numerous properties of liposomes, i.e., nontoxicity, biodegradability, and their ability to encapsulate different biological active substances in aqueous and lipid phase, make them perfect models of biomembranes. Liposomes made up of phospholipids may be used to study new applications such as cell targeting or, under specific experimental conditions, may be applied in micro and nano-sized biosensors.

This study demonstrates the capability of direct laser printing of liposomes in micron-scale patterns for the realization of biosensors or drug delivery systems.

The transfer experiments were carried out onto ordinary glass substrates, and optical microscopy images reveal that well-defined patterns without splashes can be obtained for a narrow range of laser transfer fluences using 193 nm irradiation and an intermediate triazene polymer. The triazene polymer with different thicknesses was used as sacrificial layer with the purpose of protecting the liposome solution from direct laser irradiation. It was found that the thickness of the sacrificial layer should exceed 150 nm to obtain clean, debris-free patterns. Moreover, the integrity of the liposomes after laser transfer was maintained as demonstrated through fluorescence microscopy. Raman spectroscopy data suggest that the chemical composition of the liposomes does not change for transfer fluences in the range of 40 to 60 mJ/cm2.

Following these results, one can envision that liposome patterns obtained by LIFT can be ultimately applied for in vitro and in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Cui, Q.Q. Wei, H.K. Park, C.M. Lieber, Science 293, 1289–1292 (2001)

    Article  ADS  Google Scholar 

  2. I. Zergiotti, A. Karaiskou, D.G. Papazoglou, C. Fotakis, M. Kaspsetaki, D. Kafetzoupoulous, Appl. Phys. Lett. 86, 163902 (2005)

    Article  ADS  Google Scholar 

  3. B. Schmidt, V. Almeida, C. Manolatou, S. Preble, M. Lipson, Appl. Phys. Lett. 85, 4854 (2004)

    Article  ADS  Google Scholar 

  4. K.-B. Lee, S.-J. Park, C.A. Mirkin, J.A. Smith, M. Mrksich, Science 295, 1702 (2002)

    Article  ADS  Google Scholar 

  5. D.J. Graber, T.J. Zieziulewicz, D.A. Lawrence, W. Shain, J.N. Turner, Langmuir 19, 5431 (2003)

    Article  Google Scholar 

  6. G.J. Zhang, T. Tanii, T. Zako, T. Hosaka, T. Miyake, Y. Kanari, T. Funatsu, I. Ohdomari, Small 1, 833 (2005)

    Article  Google Scholar 

  7. T. Schuler, T. Asmus, W. Fritzsche, R. Moller, Biosens. Bioelectron. 24, 2077 (2009)

    Article  Google Scholar 

  8. I. Zergioti, S. Mailis, N.A. Vainos, P. Papakonstantinou, C. Kalpouzos, C.P. Grigoropoulous, C. Fotakis, Appl. Phys. A 66, 579–582 (1998)

    Article  ADS  Google Scholar 

  9. A. Klini, A. Mourka, V. Dinca, C. Fotakis, F. Claeyssens, Appl. Phys. A, Mater. Sci. Process. 87(1), 17–22 (2007)

    Article  ADS  Google Scholar 

  10. V. Dinca, A. Ranella, M. Farsari, D. Kafetzopoulous, M. Dinescu, A. Popescu, C. Fotakis, Biomed. Microdevices 10, 719–725 (2008)

    Article  Google Scholar 

  11. J.M. Fernandez-Pradas, M. Colina, P. Serra, J. Domınguez, J.L. Morenza, Thin Solid Films 27, 453–454C (2004)

    Google Scholar 

  12. D.B. Chrisey, Science 289, 879 (2000)

    Article  Google Scholar 

  13. A. Karaiskou, I. Zergioti, C. Fotakis, M. Kapsetaki, D. Kafetzopoulos, Appl. Surf. Sci. 245, 208–209 (2003)

    Google Scholar 

  14. P. Serra, M. Colina, J.M. Fernandez-Paras, L. Sevilla, J.L. Morenza, Appl. Phys. Lett. 85, 1639–1641 (2004)

    Article  ADS  Google Scholar 

  15. B.R. Ringeisen et al., Am. Biotechnol. Lab. 19, 42 (2001)

    Google Scholar 

  16. A. Doraiswamy et al., Appl. Surf. Sci. 252, 4743–4747 (2006)

    Article  ADS  Google Scholar 

  17. D.B. Chrisey, A. Pique, R.A. McGill, J.S. Horwitz, B.R. Ringeisen, D.M. Bubb, P.K. Wu, Chem. Rev. 103, 553 (2003)

    Article  Google Scholar 

  18. V. Dinca, E. Kasotakis, J. Catherine, A. Mourka, A. Mitraki, A. Popescu, M. Dinescu, M. Farsari, C. Fotakis, Appl. Surf. Sci. 254, 1160–1163 (2007)

    Article  ADS  Google Scholar 

  19. C. Boutopoulous, V. Tsouti, D. Goustouridis, S. Chatzandroulis, I. Zergiotti, Appl. Phys. Lett. 93, 191109 (2008)

    Article  ADS  Google Scholar 

  20. R. Fardel, M. Nagel, F. Nuesch, T.K. Lippert, A. Wokaun, Appl. Surf. Sci. 254, 1322–1326 (2007)

    Article  ADS  Google Scholar 

  21. M. Nagel, R. Fardel, P. Feurer, M. Häberli, F. Nüesch, T.K. Lippert, A. Wokaun, Appl. Phys. A 92, 781–789 (2008)

    Article  ADS  Google Scholar 

  22. T. Lippert, Adv. Polym. Sci. 168, 51–246 (2004)

    Article  Google Scholar 

  23. N. Schiele, R.A. Koppes, D.T. Corr, K.S. Ellison, D.M. Thompson, L.A. Ligon, T.K.M. Lippert, D.B. Chrisey, Appl. Surf. Sci. 255, 5444–5447 (2009)

    Article  ADS  Google Scholar 

  24. J.P. Reeves, R.M. Dowben, J. Membr. Biol. 3, 123–141 (1970)

    Article  Google Scholar 

  25. P. Mueller, T.F. Chien, B. Rudy, Biophys. J. 44, 375–381 (1983)

    Article  Google Scholar 

  26. D. Needham, E. Evans, Biochemistry 27, 4668–4673 (1988)

    Article  Google Scholar 

  27. K. Akashi, H. Miyata, H. Itoh, K. Kinosita Jr., Biophys. J. 71, 3242–3250 (1996)

    Article  ADS  Google Scholar 

  28. M. Nagel, R. Hany, T. Lippert, M. Molberg, F.A. Nüesch, D. Rentsch, Macromol. Chem. Phys. 208, 277–286 (2007)

    Article  Google Scholar 

  29. T. Lippert, L.S. Bennett, T. Nakamura, H. Niino, A. Ouchi, A. Yabe, Appl. Phys. A 63, 257 (1996)

    Article  ADS  Google Scholar 

  30. T. Lippert, Plasma Process. Polym. 525 (2005)

  31. R. Fardel, M. Nagel, F. Nuesch, T.K. Lippert, A. Wokaun, Appl. Surf. Sci. 254, 1332–1337 (2007)

    Article  ADS  Google Scholar 

  32. V. Dinca, A. Ranella, A. Popescu, M. Dinescu, M. Farsari, C. Fotakis, Appl. Surf. Sci. 254, 1164–1168 (2007)

    Article  ADS  Google Scholar 

  33. P. Serra, J.M. Fernandez-Pradas, M. Colina, M. Duocastella, J. Dominguez, J.L. Morenza, J. Laser Micro/Nanoeng. 3, 236 (2006)

    Article  Google Scholar 

  34. L. Rapp, C. Cibert, A.P. Alloncle, P. Delaporte, Appl. Surf. Sci. 255(10), 5439–5443 (2009)

    Article  ADS  Google Scholar 

  35. V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, C. Fotakis, Thin Solid Films 516, 6504–6511 (2008)

    Article  ADS  Google Scholar 

  36. D.P. Cherney, J.C. Conboy, J.M. Harris, Anal. Chem. 75(23), 6621–6628 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Palla-Papavlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palla-Papavlu, A., Paraico, I., Shaw-Stewart, J. et al. Liposome micropatterning based on laser-induced forward transfer. Appl. Phys. A 102, 651–659 (2011). https://doi.org/10.1007/s00339-010-6114-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6114-1

Keywords

Navigation