Skip to main content
Log in

Angular distributions of plume components in ultrafast laser ablation of metal targets

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In view of its fundamental interest and relevance to nanoparticle film production, we have characterised the nanoparticle component of the ablation plume generated in femtosecond laser irradiation of metals. The results are compared to those of the ion plume, which is considered as representative of the atomic component. At moderate laser fluences, the angular distributions of both nanoparticle and ionic components were studied by measuring the spatial distribution of deposition on a transparent substrate and with a planar Langmuir probe, respectively. Our results show that both angular profiles of the plume components can be described by Anisimov model of isentropic expansion. As the laser fluence is increased above a value of several times the ablation threshold, the shape of the nanoparticle angular distribution progressively differs from the Anisimov prediction, contrary to what is observed for the ion component. This effect is interpreted in terms of the influence of the pressure exerted by the nascent atomic plasma plume on the initial hydrodynamic evolution of nanoparticle material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, X. Wang, Phys. Rev. B 71, 033406 (2005)

    Article  ADS  Google Scholar 

  2. S. Amoruso, G. Ausanio, R. Bruzzese, L. Lanotte, P. Scardi, M. Vitiello, X. Wang, J. Phys., Condens. Matter 18, L49 (2006)

    Article  ADS  Google Scholar 

  3. O. Albert, S. Roger, Y. Glinec, J.C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, E. Millon, Appl. Phys. A 76, 319 (2003)

    Article  ADS  Google Scholar 

  4. S.I. Anisimov, B.L. Kapelovich, T.L. Perel’man, Zh. Eksp. Teor. Fiz. 66, 776 (1974)

    ADS  Google Scholar 

  5. M.E. Povarnitsyn, T.E. Itina, M. Sentis, K.V. Khishchenko, P.R. Levashov, Phys. Rev. B 75, 235414 (2007)

    Article  ADS  Google Scholar 

  6. J.P. Colombier, P. Combis, R. Stoian, E. Audouard, Phys. Rev. B 75, 104105 (2007)

    Article  ADS  Google Scholar 

  7. S. Amoruso, R. Bruzzese, X. Wang, N.N. Nedialkov, P.A. Atanasov, J. Phys. D, Appl. Phys. 40, 331–340 (2007)

    Article  ADS  Google Scholar 

  8. C. Cheng, X. Xu, Appl. Phys. A 79, 761 (2004)

    Article  ADS  Google Scholar 

  9. D. Perez, L.J. Lewis, Phys. Rev. Lett. 89, 255504 (2002)

    Article  ADS  Google Scholar 

  10. P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. Lett. 91, 225502 (2003)

    Article  ADS  Google Scholar 

  11. D.S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)

    Article  ADS  Google Scholar 

  12. S. Amoruso, R. Bruzzese, C. Pagano, X. Wang, Appl. Phys. A 89, 1017 (2007)

    Article  ADS  Google Scholar 

  13. S. Noël, J. Hermann, Appl. Phys. Lett. 94, 053120 (2009)

    Article  ADS  Google Scholar 

  14. S. Amoruso, R. Bruzzese, X. Wang, J. Xia, Appl. Phys. Lett. 93, 191504 (2008)

    Article  ADS  Google Scholar 

  15. S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, Y. Lereah, Phys. Rev. B 69, 144119 (2004)

    Article  ADS  Google Scholar 

  16. S.I. Anisimov, D. Bauerle, B.S. Luk’yanchuk, Phys. Rev. B 48, 12076 (1993)

    Article  ADS  Google Scholar 

  17. T.N. Hansen, J. Schou, J.G. Lunney, Appl. Phys. A 69, S601–S604 (1999)

    Article  ADS  Google Scholar 

  18. B. Toftmann, J. Schou, J.G. Lunney, Phys. Rev. B 67, 104101 (2003)

    Article  ADS  Google Scholar 

  19. T. Donnelly, J.G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, X. Ni, J. Appl. Phys. 106, 013304 (2009)

    Article  ADS  Google Scholar 

  20. J.M. Liu, Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  21. B. Doggett, J.G. Lunney, J. Appl. Phys. 105, 033306 (2009)

    Article  ADS  Google Scholar 

  22. S.I. Anisimov, B.S. Luk’yanchuk, A. Luches, Appl. Surf. Sci. 96–98, 24 (1996)

    Article  Google Scholar 

  23. L.V. Zhigilei, Z. Lin, D.S. Ivanov, J. Phys. Chem. C 113, 11892 (2009)

    Article  Google Scholar 

  24. M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Phys. Rev. Lett. 103, 195002 (2009)

    Article  ADS  Google Scholar 

  25. Ya.B. Zel’dovich, Yu.P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Dover, New York, 2002)

    Google Scholar 

  26. S.-S. Wellershoff, J. Hohlfeld, J. Güdde, E. Matthias, Appl. Phys. A 69, S99 (1999)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amoruso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donnelly, T., Lunney, J.G., Amoruso, S. et al. Angular distributions of plume components in ultrafast laser ablation of metal targets. Appl. Phys. A 100, 569–574 (2010). https://doi.org/10.1007/s00339-010-5877-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5877-8

Keywords

Navigation