Skip to main content
Log in

Demolding temperature in thermal nanoimprint lithography

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In thermal nanoimprint lithography, temperature is one of the most important process parameters. Temperature is not only important for the flow of resist during molding but also for demolding, the process by which the imprint stamp is removed from the molded resist/substrate. This is because thermal stress and friction and adhesion forces generated at the stamp/resist interface and the mechanical strength of the resist are all dependent on temperature. In this paper, we demonstrate via both experimentation and numerical simulation that an optimal temperature (T d) leading to minimal deformation of molded resist exists for demolding. The ease of demolding was directly accessed by measuring demolding force at different T d for a Si stamp/PMMA/Si substrate system of 4-in.-diameter using a mechanical tester. Numerically, the demolding process for a simple two-dimensional model of a Si stamp/poly(methyl methacrylate) (PMMA) resist/Si substrate system was simulated using a finite-element method for different T d, assuming viscoelasticity of the PMMA resist and temperature dependence of friction coefficients at the stamp/PMMA interface. We found that a temperature leading to the minimum in both the demolding force and the normalized stress vs. T d curves exists below the glass transition temperature of the PMMA resist, from which the optimal T d was derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Guo, J. Phys. D: Appl. Phys. 37, R123 (2004)

    Article  ADS  Google Scholar 

  2. C.M. Sotomayor Torres (ed.), Alternative Lithography: Unleashing the Potentials of Nanotechnology (Kluwer, Boston, 2003). ISBN 03-064-78587

    Google Scholar 

  3. H.D. Rowland, W.P. King, J. Micromech. Microeng. 14, 1625 (2004)

    Article  ADS  Google Scholar 

  4. J.H. Jeong, Y.S. Choi, Y.J. Shin, J.J. Lee, K.T. Park, E.S. Lee, S.R. Lee, Fibers Polym. 3, 113 (2002)

    Article  Google Scholar 

  5. Y. Hirai, T. Konishi, T. Yoshikawa, S. Yoshida, J. Vac. Sci. Technol. B 22, 3288 (2005)

    Article  Google Scholar 

  6. Z. Song, J. Choi, B.H. You, J. Lee, S. Park, J. Vac. Sci. Technol. B 26, 598 (2008)

    Article  Google Scholar 

  7. Z. Song, B.H. You, J. Lee, S. Park, Microsyst. Technol. 14, 1593 (2008)

    Article  Google Scholar 

  8. M. Worgull, M. Heckele, W.K. Schomburg, Microsyst. Technol. 12, 110 (2005)

    Article  Google Scholar 

  9. M. Worgull, M. Heckele, J.F. Hetu, K.K. Kabanemi, J. Microlithogr. Microfabr. Microsyst. 5, 011005 (2006)

    Article  ADS  Google Scholar 

  10. Y. Guo, G. Liu, Y. Xiong, Y. Tian, J. Micromech. Microeng. 17, 9 (2007)

    Article  ADS  Google Scholar 

  11. H. Chung, Y.I. Joe, H. Han, Polym. J. 32, 215 (2000)

    Article  Google Scholar 

  12. R. Hull (ed.), Properties of Crystalline Silicon (INSPEC, London, 2003). ISBN 10: 0852969333

    Google Scholar 

  13. R.K. Gupta, Polymer and Composite Rheology, 2nd edn. (Marcel Dekker, New York, 2000). ISBN 0-8247-9922-4

    Google Scholar 

  14. M.L. Williams, R.F. Landel, J.D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955)

    Article  Google Scholar 

  15. J.A. Hammerschmidt, W.L. Gladfelter, G. Haugstad, Macromolecules 32, 3360 (1999)

    Article  ADS  Google Scholar 

  16. R. Quinson, J. Perez, M. Rink, A. Pavan, J. Mater. Sci. 32, 1371 (1997)

    Article  Google Scholar 

  17. D.S. Fryer, P.F. Nealey, J.J. de Pablo, Macromolecules 33, 6439 (2000)

    Article  ADS  Google Scholar 

  18. D.S. Fryer, J.J. de Pablo, P.F. Nealey, Proc. SPIE 3676, 473 (1999)

    Article  ADS  Google Scholar 

  19. J.A. Torres, P.F. Nealey, J.J. de Pablo, Phys. Rev. Lett. 85, 3221 (2000)

    Article  ADS  Google Scholar 

  20. J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunggook Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Song, Z., Brumfield, L. et al. Demolding temperature in thermal nanoimprint lithography. Appl. Phys. A 97, 395–402 (2009). https://doi.org/10.1007/s00339-009-5224-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5224-0

PACS

Navigation