Skip to main content
Log in

Influence of solution parameters for the fast growth of ZnO nanostructures by laser-induced chemical liquid deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO nanorods, nanoneedles, nanoparticles, and nanoballs were synthesized on fused quartz substrates upon irradiation of a droplet of methanolic zinc acetate dihydrate solution by an infrared (IR) continuous wave CO2 laser for a few seconds. The addition of monoethanolamine and water to the solution improved the alignment of the nanorods and had a significant effect on the volume and morphology of the deposits. An increase of the zinc acetate concentration was found to lead to an increase of the thickness and area covered by the initial ZnO seed layer on which the nanostructures grew. By investigating the crystal structure of the deposits using X-ray and electron diffraction, we were able to show that the nanorods grow along the c axis with a high crystalline quality. Raman and photoluminescence spectroscopy confirmed the high quality of the grown ZnO nanostructures. As a matter of fact, their photoluminescence spectra are dominated by an intense UV emission around 390 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.C. Yi, C. Wang, W.I. Park, Semicond. Sci. Technol. 20, S22 (2005)

    Article  ADS  Google Scholar 

  2. Z.L. Wang, Mater. Today 7(6), 26 (2004)

    Article  Google Scholar 

  3. J.J. Wu, S.C. Liu, Adv. Mat. 14, 215 (2002)

    Article  MathSciNet  Google Scholar 

  4. X.Y. Kong, Y. Ding, Z.L. Wang, J. Phys. Chem. B 108, 570 (2004)

    Article  Google Scholar 

  5. S. Cho, J. Ma, Y. Kim, Y. Sun, G.K.L. Wong, J.B. Ketterson, Appl. Phys. Lett. 75, 2761 (1999)

    Article  Google Scholar 

  6. X.Q. Wei, B.Y. Man, M. Liu, C.S. Xue, H.Z. Zhyang, C. Yang, Physica 388, 145 (2007)

    Article  Google Scholar 

  7. Y. Li, G.W. Meng, L.D. Zhang, Appl. Phys. Lett. 76, 2011 (2000)

    Article  ADS  Google Scholar 

  8. T. Ma, M. Guo, Y. Zhang, X. Wang, Nanotechnology 18, 035605 (2007)

    Article  ADS  Google Scholar 

  9. L.E. Greene, B.D. Yukas, M. Law, D. Zitoun, P. Yang, Inorg. Chem. 45, 7535 (2006)

    Article  Google Scholar 

  10. Y.-J. Lee, T.L. Sounart, D.A. Scrymgeour, J.A. Voigt, J.W.P. Hsu, J. Cryst. Growth 304, 80 (2007)

    Article  ADS  Google Scholar 

  11. S.E. Ahn, J.S. Lee, H. Kim, S. Kim, B.H. Kang, K.H. Kim, G.T. Kim, Appl. Phys. Lett. 84, 5022 (2004)

    Article  ADS  Google Scholar 

  12. L. Vayssieres, N. Beermann, S.-E. Lindquist, A. Hagfeldt, Chem. Mater. 13, 233 (2001)

    Article  Google Scholar 

  13. B. Liu, H.C. Zeng, Langmuir 20, 4196 (2004)

    Article  Google Scholar 

  14. K. Kordas, J. Bekesi, R. Vajtai, L. Nanai, S. Leppavuori, A. Uusimaki, K. Bali, T.F. George, G. Galbacs, F. Ignacz, P. Moilanen, Appl. Surf. Sci. 172, 178 (2001)

    Article  ADS  Google Scholar 

  15. Z.C. Zhong, R.H. Cheng, J. Bosley, P.A. Dowben, D.J. Sellmyer, Appl. Surf. Sci. 181, 196 (2001)

    Article  ADS  Google Scholar 

  16. A. Ouchi, Z. Bastl, J. Boháček, J. Šubrt, J. Pola, Surf. Coat. Technol. 201, 4728 (2007)

    Article  Google Scholar 

  17. C. Fauteux, R. Longtin, J. Pegna, D. Therriault, Inorg. Chem. 46, 11036 (2007)

    Article  Google Scholar 

  18. L. Spanhel, J. Sol-Gel Sci. Technol. 39, 7 (2006)

    Article  Google Scholar 

  19. R.A. Johnson, A.E. Stanley, Appl. Spectrosc. 42, 1268 (1988)

    Article  ADS  Google Scholar 

  20. T. Baba, A. Kobayashi, Y. Kawanami, K. Inazu, A. Ishikawa, T. Echizenn, K. Murai, S. Aso, M. Inomata, Green Chem. 7, 159 (2005)

    Article  Google Scholar 

  21. M.L. Wolbarsht, IEEE J. Quantum Electron. 20, 1427 (1984)

    Article  Google Scholar 

  22. M. Lax, J. Appl. Phys. 48, 3919 (1977)

    Article  ADS  Google Scholar 

  23. M.R. Brook, K.I. Grandberg, G.A. Shafeev, Appl. Phys. A 52, 78 (1991)

    ADS  Google Scholar 

  24. G.G. Gladush, L.S. Krasitskaya, E.B. Levchenko, A.L. Chernyakov, Sov. J. Quantum Electron. 12, 408 (1982)

    Article  Google Scholar 

  25. R. Hong, C. Wei, H. He, Z. Fan, J. Shao, Thin Solid Films 485, 262 (2005)

    Article  ADS  Google Scholar 

  26. E. Hosono, S. Fujihara, T. Kimura, H. Imai, J. Sol-Gel Sci. Technol. 29, 71 (2004)

    Article  Google Scholar 

  27. L. Hiltunen, M. Leskelä, M. Mäkelä, L. Niinistö, Acta Chem. Scand. A 41, 548 (1987)

    Article  Google Scholar 

  28. T. Arii, A. Kishi, Thermochim. Acta 400, 175 (2003)

    Article  Google Scholar 

  29. T. Maruyama, J. Shionoya, J. Mater. Sci. Lett. 11, 170 (1992)

    Article  Google Scholar 

  30. M. Ohyama, H. Kozuka, T. Yoko, Thin Solid Films 306, 78 (1997)

    Article  ADS  Google Scholar 

  31. L. Znaidi, G.J.A.A. Soler Illia, S. Benyahia, C. Sanchez, A.V. Kanaev, Thin Solid Films 428, 257 (2003)

    Article  ADS  Google Scholar 

  32. JCPDS card 36–1451, ZnO

  33. F. Paraguay, W. Estrada, D.R. Acosta, E. Andrade, M. Miki-Yoshida, Thin Solid Films 350, 192 (1999)

    Article  ADS  Google Scholar 

  34. J. Lim, K. Shin, H.W. Kim, C. Lee, J. Lumin. 109, 181 (2004)

    Google Scholar 

  35. W.S. Shi, B. Cheng, L. Zhang, E.T. Samulski, J. Appl. Phys. 98, 083502 (2005)

    Article  ADS  Google Scholar 

  36. T.C. Damen, S.P.S. Porto, B. Tell, Phys. Rev. 142, 570 (1966)

    Article  ADS  Google Scholar 

  37. A.E. Geissberger, F.L. Galeener, Phys. Rev. B 28, 3266 (1983)

    Article  ADS  Google Scholar 

  38. V. Koleva, D. Stoilova, J. Mol. Struct. 611, 1 (2002)

    Article  ADS  Google Scholar 

  39. M.M. Yang, D.A. Crerar, D.E. Irish, Geochim. Cosmochim. Acta 53, 319 (1989)

    Article  ADS  Google Scholar 

  40. R.D. Yang, S. Tripathy, Y. Li, H.-J. Sul, Chem. Phys. Lett. 411, 150 (2005)

    Article  ADS  Google Scholar 

  41. V. Crupi, F. Longo, D. Majolino, V. Venuti, Eur. Phys. J. Spec. Top. 141, 6164 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Fauteux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fauteux, C., Khakani, M.A.E., Pegna, J. et al. Influence of solution parameters for the fast growth of ZnO nanostructures by laser-induced chemical liquid deposition. Appl. Phys. A 94, 819–829 (2009). https://doi.org/10.1007/s00339-008-4857-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4857-8

PACS

Navigation