Skip to main content
Log in

Effect of different types of pseudopotentials on study of electronic dispersion for graphene and a (5,5) SWCNT

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We study the electronic dispersion for a graphene sheet and also a (5,5) single wall carbon nanotube (SWCNT) by using the PWscf code from the ‘Quantum Espresso’ package. Two different types of pseudopotentials, ‘norm conserving’ and ‘ultra soft’, have been employed and the results are more or less similar up to the Fermi level. By energy relaxation, it was found that, if the inter-layer distance of graphite expands up to 4.5 times its in-layer (hexagonal) lattice constant, then each layer can be considered as an individual graphene sheet and, in a bundle of (5,5) SWCNTs, the optimum separation between the tubes’ centers is about 19 a.u. and, if it expands to 22 a.u., then a single wall tube consideration can be made. The calculated band structure and density of states (DOS) for the (5,5) SWCNT show that in the vicinity of the Fermi level there is no energy gap (so that it is metallic) and there is a general agreement between them and zone-folding studies or other ab initio methods in the literature. The effects of curvature on the band shifts and DOS have been considered, and they magnify the departure from Mintmire and White’s universal prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Reich, C. Thomsen, P. Ordejon, Phys. Rev. B 65, 155411 (2002)

    Article  ADS  Google Scholar 

  2. S. Reich, J. Maultzsch, C. Thomsen, P. Ordejon, Phys. Rev. B 66, 035412 (2002)

    Article  ADS  Google Scholar 

  3. N. Hamada, S.I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992)

    Article  ADS  Google Scholar 

  4. P.M. Rafailof, H. Jantoljak, C. Thomsen, Phys. Rev. B 61, 16179 (2000)

    Article  ADS  Google Scholar 

  5. A. Rubio, Appl. Phys. A 68, 275 (1999)

    Article  ADS  Google Scholar 

  6. J.C. Charlier, Acc. Chem. Res. 35, 1063 (2002)

    Article  Google Scholar 

  7. D. Östling, D. Tomanek, A. Rosen, Phys. Rev. B 55, 20 (1997)

    Article  Google Scholar 

  8. M.B. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Phys. Rev. B 62, 165401 (2002)

    Article  ADS  Google Scholar 

  9. http://www.pwscf.org

  10. D.R. Hamann, Phys. Rev. B 40, 2980 (1989)

    Article  ADS  Google Scholar 

  11. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  12. K. Iyakutti, A. Bodapati, X. Peng, P. Keblinski, S.K. Nayak, Phys. Rev. B 73, 035413 (2006)

    Article  ADS  Google Scholar 

  13. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  14. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  15. L. Landau, D. Zur, Phys. Z. Sowjetunion 11, 26 (1937)

    Google Scholar 

  16. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  17. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    Article  ADS  Google Scholar 

  18. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  19. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 314, 951 (2006)

    Article  ADS  Google Scholar 

  20. B. Partoens, F.M. Peeters, Phys. Rev. B 74, 075404 (2006)

    Article  ADS  Google Scholar 

  21. M. Machon, S. Reich, C. Thomsen, D. Sanchez-Portal, P. Ordejon, Phys. Rev. B 66, 155410 (2002)

    Article  ADS  Google Scholar 

  22. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 46, 1804 (1992)

    Article  ADS  Google Scholar 

  23. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 61, 2981 (2000)

    Article  ADS  Google Scholar 

  24. S. Reich, C. Thomsen, Phys. Rev. B 62, 4273 (2000)

    Article  ADS  Google Scholar 

  25. X. Blase, L.X. Benedict, E.L. Shirley, S.G. Louie, Phys. Rev. Lett. 72, 1878 (1994)

    Article  ADS  Google Scholar 

  26. J.W. Mintmire, C.T. White, Phys. Rev. Lett. 81, 2506 (1998)

    Article  ADS  Google Scholar 

  27. I. Milosevic, B. Nikolic, M. Damnjanovic, Phys. Rev. B 69, 113408 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Khoshnevisan.

Additional information

PACS

71.20.Tx; 71.15.Mb; 73.61.Wp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoshnevisan, B., Tabatabaean, Z. Effect of different types of pseudopotentials on study of electronic dispersion for graphene and a (5,5) SWCNT. Appl. Phys. A 92, 371–374 (2008). https://doi.org/10.1007/s00339-008-4532-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4532-0

Keywords

Navigation