Skip to main content
Log in

Influence of the Si/SiO2 interface on the charge carrier density of Si nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electrical properties of Si nanowires covered by a SiO2 shell are influenced by the properties of the Si/SiO2 interface. This interface can be characterized by the fixed oxide charge density Qf and the interface trap level density Dit. We derive expressions for the effective charge carrier density in silicon nanowires as a function of Qf, Dit, the nanowire radius, and the dopant density. It is found that a nanowire is fully depleted when its radius is smaller than a critical radius acrit. An analytic expression for acrit is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Shockley, G.L. Pearson, Phys. Rev. 74, 232 (1948)

    Article  ADS  Google Scholar 

  2. R. Calarco, M. Marso, T. Richter, A.I. Aykanat, R. Meijers, A. v. d. Hart, T. Stoica, H. Lüth, Nano Lett. 5, 981 (2005)

    Article  Google Scholar 

  3. K. Seo, S. Sharma, A.A. Yasseri, D.R. Stewart, T.I. Kamins, Electrochem. Solid State Lett. 9, G69 (2006)

    Article  Google Scholar 

  4. T. Stoica, R.J. Meijers, R. Calarco, T. Richter, E. Sutter, H. Lüth, Nano Lett. 6, 1541 (2006)

    Article  Google Scholar 

  5. I. Kimukin, M.S. Islam, R.S. Williams, Nanotechnology 17, S240 (2006)

    Article  ADS  Google Scholar 

  6. M.H.M. van Weert, O. Wunnike, A.L. Roest, T.J. Eijkemans, A.Y. Silov, J.E.M. Haverkort, G.W. ’t Hooft, E.P.A.M. Bakkers, Appl. Phys. Lett. 88, 043109 (2006)

    Article  Google Scholar 

  7. V. Schmidt, S. Senz, U. Gösele, Nano Lett. 5, 931 (2005)

    Article  Google Scholar 

  8. Y. Cui, X. Duan, J. Hu, C.M. Lieber, J. Phys. Chem. B 104, 5213 (2000)

    Article  Google Scholar 

  9. G. Zheng, W. Lu, S. Jin, C.M. Lieber, Adv. Mater. 16, 1890 (2004)

    Article  Google Scholar 

  10. C. Yang, Z. Zhong, C.M. Lieber, Science 310, 1304 (2005)

    Article  ADS  Google Scholar 

  11. B.E. Deal, IEEE Trans. Electron. Dev. 27, 606 (1980)

    Google Scholar 

  12. E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  13. R.H. Silsbee, J. Appl. Phys. 32, 1459 (1961)

    Article  Google Scholar 

  14. R.A. Weeks, J. Appl. Phys. 27, 1376 (1956)

    Article  Google Scholar 

  15. D.L. Griscom, Phys. Rev. B 22, 4192 (1980)

    Article  ADS  Google Scholar 

  16. P.M. Lenahan, P.V. Dressendorfer, J. Appl. Phys. 55, 3495 (1984)

    Article  ADS  Google Scholar 

  17. Y. Nishi, Japan. J. Appl. Phys. 5, 333 (1966)

    Article  Google Scholar 

  18. Y. Nishi, Japan. J. Appl. Phys. 10, 52 (1971)

    Article  Google Scholar 

  19. Y. Nishi, K. Tanaka, A. Ohwada, Japan. J. Appl. Phys. 11, 85 (1972)

    Article  Google Scholar 

  20. P.J. Caplan, E.H. Poindexter, B.E. Deal, R.R. Razouk, J. Appl. Phys. 50, 5847 (1979)

    Article  ADS  Google Scholar 

  21. E.H. Poindexter, P.J. Caplan, B.E. Deal, R.R. Razouk, J. Appl. Phys. 52, 879 (1981)

    Article  ADS  Google Scholar 

  22. P.M. Lenahan, P.V. Dressendorfer, Appl. Phys. Lett. 41, 542 (1982)

    Article  ADS  Google Scholar 

  23. P.M. Lenahan, P.V. Dressendorfer, J. Appl. Phys. 54, 1457 (1983)

    Article  ADS  Google Scholar 

  24. P.M. Lenahan, P.V. Dressendorfer, Appl. Phys. Lett. 44, 96 (1984)

    Article  ADS  Google Scholar 

  25. Y.Y. Kim, P.M. Lenahan, J. Appl. Phys. 64, 3551 (1988)

    Article  ADS  Google Scholar 

  26. N.M. Johnson, D.K. Biegelsen, M.D. Moyer, S.T. Chang, E.H. Poindexter, P.J. Caplan, Appl. Phys. Lett. 43, 563 (1983)

    Article  ADS  Google Scholar 

  27. C. Munakata, S. Nishimatsu, N. Honma, K. Yagi, Japan. J. Appl. Phys. 23, 1451 (1984)

    Article  Google Scholar 

  28. C. Munakata, S. Nishimatsu, Japan. J. Appl. Phys. 25, 807 (1986)

    Article  Google Scholar 

  29. J.S. Lyo, K.S. Nam, C. Lee, Japan. J. Appl. Phys. 32, 4393 (1993)

    Article  Google Scholar 

  30. P.J. McWhorter, P.S. Winokur, Appl. Phys. Lett. 48, 133 (1986)

    Article  ADS  Google Scholar 

  31. D.M. Fleetwood, Appl. Phys. Lett. 60, 2883 (1992)

    Article  ADS  Google Scholar 

  32. D.M. Fleetwood, P.S. Winokur, R.A. Reber, T.L. Meisenheimer, J.R. Schwank, M.R. Shaneyfelt, L.C. Riewe, J. Appl. Phys. 73, 5058 (1993)

    Article  ADS  Google Scholar 

  33. R.B. Lauglin, J.D. Joannopoulos, D.J. Chadi, Phys. Rev. B 21, 5733 (1980)

    Article  ADS  Google Scholar 

  34. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981) p. 385

    Google Scholar 

  35. M.H. White, J.R. Cricchi, IEEE Trans. Electron. Dev. 19, 1280 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Schmidt.

Additional information

PACS

68.65.-k; 61.46.+w; 81.10.Bk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, V., Senz, S. & Gösele, U. Influence of the Si/SiO2 interface on the charge carrier density of Si nanowires. Appl. Phys. A 86, 187–191 (2007). https://doi.org/10.1007/s00339-006-3746-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3746-2

Keywords

Navigation