Skip to main content
Log in

Surface-defect tailoring in SnO2 (CNT) nanomaterials via sol-gel routes and its influence on the cycling stability

  • Functional Nanocomposite Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report on the synthesis of SnO2 nanoparticles and SnO2:CNT hybrids, via a one-step solgel method. Herein, we investigate the influence of the synthesis conditions on their physical, chemical, optical and electrochemical properties. The crystalline structure, nanoparticle size and morphology are assessed by X-ray diffraction and transmission electron microscopy. The chemical states are elucidated by X-ray photoelectron and Raman spectroscopies. Their electrochemical behavior is studied by cyclic voltammetry. Overall, an oxygen-poor environment during the synthesis leads to smaller SnO2 nanoparticles, along with an increased number of surface defects. Photoluminescence spectroscopy demonstrates that under an oxygen-poor environment, bridging-oxygen vacancies are more abundant. Additionally, SnO2 nanoparticles containing a higher amount of oxygen vacancies exhibit a higher cycling stability of 90%. The cycling stability is further enhanced in hybrid SnO2:CNT. The electrochemical behavior is corroborated to the surface defects and in turn, the band bending mechanism in SnO2 n-type semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

Data will be made available on request.

Code availability

Not applicable.

References

  1. Jarzebski ZM, Marton JP (1976) Physical properties of SnO2 materials: I. preparation and defect structure. J Electrochem Soc 123(7):199C

    Article  CAS  Google Scholar 

  2. Godinho KG, Walsh A, Watson GW (2009) Energetic and electronic structure analysis of intrinsic defects in SnO2. J Phys Chem C 113(1):439–448

    Article  CAS  Google Scholar 

  3. Godin TJ, LaFemina JP (1994) Atomic structure of the cassiterite SnO2(111) surface. Surf Sci 301(1):364–370

    Article  CAS  Google Scholar 

  4. Xiong L, Guo Y, Wen J, Liu H, Yang G, Qin P, Fang G (2018) Review on the application of SnO2 in perovskite solar cells. Adv Func Mater 28(35):1802757

    Article  Google Scholar 

  5. Remes Z, Vanecek M, Yates HM, Evans P, Sheel DW (2009) Optical properties of SnO2: F films deposited by atmospheric pressure CVD. Thin Solid Films 517(23):6287–6289

    Article  CAS  Google Scholar 

  6. Uwihoreye V, Yang Z, Zhang J-Y, Lin Y-M, Liang X, Yang L, Zhang KHL (2023) Transparent conductive SnO2 thin films via resonant Ta doping. Sci China Mater 66(1):264–271

    Article  CAS  Google Scholar 

  7. Das S, Jayaraman V (2014) SnO2: a comprehensive review on structures and gas sensors. Prog Mater Sci 66:112–255

    Article  CAS  Google Scholar 

  8. Shah V, Bhaliya J, Patel GM, Joshi P (2022) Room-temperature chemiresistive gas sensing of SnO2 nanowires: a review. J Inorg Organomet Polym Mater 32(3):741–772

    Article  CAS  Google Scholar 

  9. Choi Y-J, Hwang I-S, Park J-G, Choi KJ, Park J-H, Lee J-H (2008) Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 19(9):095508

    Article  PubMed  Google Scholar 

  10. Lee S-H, Galstyan V, Ponzoni A, Gonzalo-Juan I, Riedel R, Dourges M-A, Nicolas Y, Toupance T (2018) Finely tuned SnO2 nanoparticles for efficient detection of reducing and oxidizing gases: the influence of alkali metal cation on gas-sensing properties. ACS Appl Mater Interfaces 10(12):10173–10184

    Article  CAS  PubMed  Google Scholar 

  11. Meng T, Xu Q-Q, Wang Z-H, Li Y-T, Gao Z-M, Xing X-Y, Ren T-Z (2015) Co3O4 Nanorods with self-assembled nanoparticles in queue for supercapacitor. Electrochim Acta 180:104–111

    Article  CAS  Google Scholar 

  12. Nithya VD, Arul NS (2016) Review on α-Fe2O3 based negative electrode for high performance supercapacitors. J Power Sources 327:297–318

    Article  CAS  Google Scholar 

  13. Rafique A, Massa A, Fontana M, Bianco S, Chiodoni A, Pirri CF, Hernández S, Lamberti A (2017) Highly uniform anodically deposited film of MnO2 nanoflakes on carbon fibers for flexible and wearable fiber-shaped supercapacitors. ACS Appl Mater Interfaces 9(34):28386–28393

    Article  CAS  PubMed  Google Scholar 

  14. Tran QN, Choi HW (2023) Development of cellulose nanofiber-SnO2 supported nanocomposite as substrate materials for high-performance lithium-ion batteries. Nanomaterials 13(6):1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang M, Chen T, Liao T, Zhang X, Zhu B, Tang H, Dai C (2021) Tin dioxide-based nanomaterials as anodes for lithium-ion batteries. RSC Adv 11(2):1200–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bonu V, Gupta B, Chandra S, Das A, Dhara S, Tyagi AK (2016) Electrochemical supercapacitor performance of SnO2 quantum dots. Electrochim Acta 203:230–237

    Article  CAS  Google Scholar 

  17. Ansari MZ, Ansari SA, Kim S-H (2022) Fundamentals and recent progress of Sn-based electrode materials for supercapacitors: a comprehensive review. Journal of Energy Storage 53:105187

    Article  Google Scholar 

  18. Guan C, Wang X, Zhang Q, Fan Z, Zhang H, Fan HJ (2014) Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. Nano Lett 14(8):4852–4858

    Article  CAS  PubMed  Google Scholar 

  19. Amuthameena S, Dhayalini K, Balraj B, Siva C, Senthilkumar N (2021) Two step synthesis and electrochemical behavior of SnO2 nanomaterials for electrical energy storage devices. Inorg Chem Commun 131:108803

    Article  CAS  Google Scholar 

  20. Chiu H-C, Yeh C-S (2007) Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol. J Phys Chem C 111(20):7256–7259

    Article  CAS  Google Scholar 

  21. Zhu H, Yang D, Yu G, Zhang H, Yao K (2006) A simple hydrothermal route for synthesizing SnO2 quantum dots. Nanotechnology 17(9):2386

    Article  CAS  Google Scholar 

  22. Gu F, Wang SF, Lü MK, Zhou GJ, Xu D, Yuan DR (2004) Photoluminescence properties of SnO2 nanoparticles synthesized by sol−gel method. J Phys Chem B 108(24):8119–8123

    Article  CAS  Google Scholar 

  23. Aziz M, Saber Abbas S, Wan Baharom WR (2013) Size-controlled synthesis of SnO2 nanoparticles by sol–gel method. Mater Lett 91:31–34

    Article  CAS  Google Scholar 

  24. Zhu J-J, Zhu J-M, Liao X-H, Fang J-L, Zhou M-G, Chen H-Y (2002) Rapid synthesis of nanocrystalline SnO2 powders by microwave heating method. Mater Lett 53(1):12–19

    Article  CAS  Google Scholar 

  25. Dou X, Sabba D, Mathews N, Wong LH, Lam YM, Mhaisalkar S (2011) Hydrothermal synthesis of high electron mobility Zn-doped SnO2 nanoflowers as photoanode material for efficient dye-sensitized solar cells. Chem Mater 23(17):3938–3945

    Article  CAS  Google Scholar 

  26. Rauwel E, Galeckas A, Rauwel P (2014) Photoluminescent cubic and monoclinic HfO2 nanoparticles: effects of temperature and ambient. Mater Res Exp 1(1):015035

    Article  CAS  Google Scholar 

  27. Huang H, Ng M, Wu Y, Kong L (2015) Solvothermal synthesis of Sb:SnO2 nanoparticles and IR shielding coating for smart window. Mater Des 88:384–389

    Article  CAS  Google Scholar 

  28. Niederberger M (2007) Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc Chem Res 40(9):793–800

    Article  CAS  PubMed  Google Scholar 

  29. Anuchai S, Phanichphant S, Tantraviwat D, Pluengphon P, Bovornratanaraks T, Inceesungvorn B (2018) Low temperature preparation of oxygen-deficient tin dioxide nanocrystals and a role of oxygen vacancy in photocatalytic activity improvement. J Colloid Interface Sci 512:105–114

    Article  CAS  PubMed  Google Scholar 

  30. Pinna N, Karmaoui M, Willinger M-G (2011) The “benzyl alcohol route”: An elegant approach towards doped and multimetal oxide nanocrystals. J Sol-Gel Sci Technol 57(3):323–329

    Article  CAS  Google Scholar 

  31. Rauwel P, Galeckas A, Salumaa M, Ducroquet F, Rauwel E (2016) Photocurrent generation in carbon nanotube/cubic-phase HfO2 nanoparticle hybrid nanocomposites. Beilstein J Nanotechnol 7:1075–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Roo J, De Keukeleere K, Feys J, Lommens P, Zeger H, Van Driessche I (2013) Fast, microwave-assisted synthesis of monodisperse HfO2 nanoparticles. J Nanopart Res 15:1778

    Article  Google Scholar 

  33. Pucci A, Clavel G, Willinger M-G, Zitoun D, Pinna N (2009) Transition metal-doped ZrO2 and HfO2 nanocrystals. J Phys Chem C 113(28):12048–12058

    Article  CAS  Google Scholar 

  34. Garnweitner G, Goldenberg LM, Sakhno OV, Antonietti M, Niederberger M, Stumpe J (2007) Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography. Small 3(9):1626–1632

    Article  CAS  PubMed  Google Scholar 

  35. Pinna N, Antonietti M, Niederberger M (2004) A novel nonaqueous route to V2O3 and Nb2O5 nanocrystals. Colloids Surf A 250(1):211–213

    Article  CAS  Google Scholar 

  36. Karmaoui M, Ramana EV, Tobaldi DM, Lajaunie L, Graça MP, Arenal R, Seabra MP, Labrincha JA, Pullar RC (2016) High dielectric constant and capacitance in ultrasmall (2.5 nm) SrHfO3 perovskite nanoparticles produced in a low temperature non-aqueous sol–gel route. RSC Adv 6(57):51493–51502

    Article  CAS  Google Scholar 

  37. Niederberger M, Garnweitner G, Pinna N, Antonietti M (2004) Nonaqueous and halide-free route to crystalline BaTiO3, SrTiO3, and (Ba, Sr)TiO3 nanoparticles via a mechanism involving C−C bond formation. J Am Chem Soc 126(29):9120–9126

    Article  CAS  PubMed  Google Scholar 

  38. Niederberger M, Garnweitner G (2006) Nonaqueous synthesis of barium titanate nanocrystals in acetophenone as oxygen supplying agent. MRS Online Proc Libr 879(1):98

    Google Scholar 

  39. Yáñez-Vilar S, Sánchez-Andújar M, Gómez-Aguirre C, Mira J, Señarís-Rodríguez MA, Castro-García S (2009) A simple solvothermal synthesis of MFe2O4 (M=Mn, Co and Ni) nanoparticles. J Solid State Chem 182(10):2685–2690

    Article  Google Scholar 

  40. Wei L, Karahan HE, Zhai S, Liu H, Chen X, Zhou Z, Lei Y, Liu Z, Chen Y (2017) Amorphous bimetallic oxide-graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn–Air batteries. Adv Mater 29(38):1701410

    Article  Google Scholar 

  41. Xiao L, Zhao Y, Yin J, Zhang L (2009) Clewlike ZnV2O4 hollow spheres: nonaqueous sol-gel synthesis, formation mechanism, and lithium storage properties. Chem A Eur J 15(37):9442–9450

    Article  CAS  Google Scholar 

  42. Salian A, Mandal S (2022) Entropy stabilized multicomponent oxides with diverse functionality—a review. Crit Rev Solid State Mater Sci 47(2):142–193

    Article  CAS  Google Scholar 

  43. Chen JS, Lou XW (2013) SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9(11):1877–1893

    Article  CAS  PubMed  Google Scholar 

  44. Muniz FTL, Miranda MAR, Morilla dos Santos C, Sasaki JM (2016) The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr A 72(3):385–390

    Article  CAS  Google Scholar 

  45. Rauwel E, Galeckas A, Rauwel P, Sunding MF, Fjellvåg H (2011) Precursor-dependent blue-green photoluminescence emission of zno nanoparticles. J Phys Chem C 115(51):25227–25233

    Article  CAS  Google Scholar 

  46. Nagpal K, Rauwel E, Estephan E, Soares MR, Rauwel P (2022) Significance of hydroxyl groups on the optical properties of ZnO nanoparticles combined with CNT and PEDOT:PSS. Nanomaterials 12:3546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Malik R, Tomer VK, Duhan S, Nehra SP, Rana PS (2015) One-Pot Hydrothermal synthesis of porous SnO2 nanostructures for photocatalytic degradation of organic pollutants. Energy Environ Focus 4(4):340–345

    Article  Google Scholar 

  48. Montanheiro TLDA, de Menezes BRC, Ribas RG, Montagna LS, Campos TMB, Schatkoski VM, Righetti VAN, Passador FR, Thim GP (2019) Covalently γ-aminobutyric acid-functionalized carbon nanotubes: improved compatibility with PHBV matrix. SN Appl Sci 1(10):177

    Article  Google Scholar 

  49. Kang J, Tsunekawa S, Kasuya A (2001) Ultraviolet absorption spectra of amphoteric SnO2 nanocrystallites. Appl Surf Sci 174(3):306–309

    Article  CAS  Google Scholar 

  50. Liu E, Sarkar B, Chen Z, Naidu R (2016) Decontamination of chlorine gas by organic amine modified copper-exchanged zeolite. Microporous Mesoporous Mater 225:450–455

    Article  CAS  Google Scholar 

  51. Gong W, Guo H, Zhang H, Yang J, Chen H, Wang L, Hao F, Niu X (2020) Chlorine-doped SnO2 hydrophobic surfaces for large grain perovskite solar cells. J Mater Chem C 8(33):11638–11646

    Article  CAS  Google Scholar 

  52. Ren X, Liu Y, Lee DG, Kim WB, Han GS, Jung HS, Liu S (2020) Chlorine-modified SnO2 electron transport layer for high-efficiency perovskite solar cells. InfoMat 2(2):401–408

    Article  CAS  Google Scholar 

  53. Kim J, Park J, Kim Y-H, Jo W (2022) Improvement of open-circuit voltage deficit via pre-treated NH4+ ion modification of interface between SnO2 and perovskite solar cells. Small 18(44):2204173

    Article  CAS  Google Scholar 

  54. Muthukrishnan AP, Lee J, Kim J, Kim CS, Jo S (2022) Low-temperature solution-processed SnO2 electron transport layer modified by oxygen plasma for planar perovskite solar cells. RSC Adv 12(8):4883–4890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Henke BL, Perera RCC, Urch DS (2008) Cl-LII, III fluorescent x-ray spectra measurement and analysis for the molecular orbital structure of ClO4−, ClO3−, and ClO2−. J Chem Phys 68(8):3692–3704

    Article  Google Scholar 

  56. Vioux A (1997) Nonhydrolytic sol−gel routes to oxides. Chem Mater 9(11):2292–2299

    Article  CAS  Google Scholar 

  57. Corriu RJP, Leclercq D, Lefèvre P, Mutin PH, Vioux A (1992) Materials chemistry communications: preparation of monolithic metal oxide gels by a non-hydrolytic sol–gel process. J Mater Chem 2(6):673–674

    Article  CAS  Google Scholar 

  58. Corriu R, Leclercq D, Lefevre P, Mutin PH, Vioux A (1992) Preparation of monolithic binary oxide gels by a nonhydrolytic sol-gel process. Chem Mater 4(5):961–963

    Article  CAS  Google Scholar 

  59. Pinna N, Niederberger M (2008) Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed 47(29):5292–5304

    Article  CAS  Google Scholar 

  60. Adhikari AD, Oraon R, Tiwari SK, Saren P, Maity CK, Lee JH, Hoon Kim N, Nayak GC (2018) Zn-doped SnO2 nano-urchin-enriched 3D carbonaceous framework for supercapacitor application. New J Chem 42(2):955–963

    Article  CAS  Google Scholar 

  61. Kharlamova MV, Paukov M, Burdanova MG (2022) Nanotube functionalization: investigation. Methods Demonst Appl Mater 12:3546

    Google Scholar 

  62. Kim B-J, Kim J-P, Park J-S (2014) Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method. Nanoscale Res Lett 9(1):236

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kwoka M, Lyson-Sypien B, Kulis A, Zappa D, Comini E (2018) Surface properties of SnO2 nanowires deposited on si substrate covered by Au catalyst studies by XPS, TDS and SEM Nanomaterials

  64. Ma D, Li Y, Zhang P, Lin Z (2018) Oxygen vacancy engineering in Tin(IV) oxide based anode materials toward advanced sodium-ion batteries. Chemsuschem 11(21):3693–3703

    Article  CAS  PubMed  Google Scholar 

  65. Kerber SJ, Bruckner JJ, Wozniak K, Seal S, Hardcastle S, Barr TL (1996) The nature of hydrogen in x-ray photoelectron spectroscopy: general patterns from hydroxides to hydrogen bonding. J Vac Sci Technol, A 14(3):1314–1320

    Article  CAS  Google Scholar 

  66. Gorham JM, Osborn WA, Woodcock JW, Scott KC, Heddleston JM, Walker AR, Gilman JW (2016) Detecting carbon in carbon: exploiting differential charging to obtain information on the chemical identity and spatial location of carbon nanotube aggregates in composites by imaging x-ray photoelectron spectroscopy. Carbon N Y 96:1208–1216

    Article  CAS  PubMed  Google Scholar 

  67. Karmaoui M, Jorge AB, McMillan PF, Aliev AE, Pullar RC, Labrincha JA, Tobaldi DM (2018) One-Step synthesis, structure, and band gap properties of SnO2 nanoparticles made by a low temperature nonaqueous sol-gel technique. ACS Omega 3(10):13227–13238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim T, Roy SB, Moon S, Yoo S, Choi H, Parale VG, Kim Y, Lee J, Jun SC, Kang K, Chun S-H, Kanamori K, Park H-H (2022) Highly dispersed pt clusters on F-doped tin(IV) oxide aerogel matrix: an ultra-robust hybrid catalyst for enhanced hydrogen evolution. ACS Nano 16(1):1625–1638

    Article  CAS  PubMed  Google Scholar 

  69. Floriano EA, Scalvi LVDA, Sambrano JR, Geraldo V (2010) Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin films. Mater Res 13:11

    Article  Google Scholar 

  70. Van Pham V, Mai D-Q, Bui D-P, Van Man T, Zhu B, Zhang L, Sangkaworn J, Tantirungrotechai J, Reutrakul V, Cao TM (2021) Emerging 2D/0D g-C3N4/SnO2 S-scheme photocatalyst: New generation architectural structure of heterojunctions toward visible-light-driven NO degradation. Environ Pollut 286:117510

    Article  PubMed  Google Scholar 

  71. Prabakaran P, Raj MVA, Madhavan J (2016) Low temperature synthesis of tin oxide nano crystallites: optical and dielectric properties

  72. D. Kim, D.H. Kim, D.-H. Riu, B.J. Choi, Temperature Effect on the Growth Rate and Physical Characteristics of SnO2 Thin Films Grown by Atomic Layer Deposition, Archives of Metallurgy and Materials 63(2) (2018).

  73. A. D., Susilawati, S. Hakim, L. Muliyadi, M. T., Nazarudin, (2019) The effect of indium doped SnO2 thin films on optical properties prepared by sol-gel spin coating technique. J Phys Conf Ser 1397(1)

    Article  Google Scholar 

  74. Sambasivam S, Maram PS, Muralee Gopi CVV, Obaidat IM (2020) Effect of erbium on the structural, morphological, and optical properties of SnO2 thin films deposited by spray pyrolysis. Optik 202:163596

    Article  CAS  Google Scholar 

  75. Razeghizadeh A, Kazemnezhad I, Zalaghi L, Rafee V (2018) Effects of sol concentration on the structural and optical properties of SnO2 nanoparticle. Iran J Chem Chem Eng 37(2):25–32

    CAS  Google Scholar 

  76. Oviedo J, Gillan MJ (2000) The energetics and structure of oxygen vacancies on the SnO2(110) surface. Surf Sci 467(1):35–48

    Article  CAS  Google Scholar 

  77. Xiong Y, Lin Y, Wang X, Zhao Y, Tian J (2022) Defect engineering on SnO2 nanomaterials for enhanced gas sensing performances. Adv Powder Mater 1(3):100033

    Article  Google Scholar 

  78. Epifani M, Prades JD, Comini E, Pellicer E, Avella M, Siciliano P, Faglia G, Cirera A, Scotti R, Morazzoni F, Morante JR (2008) The role of surface oxygen vacancies in the NO2 sensing properties of SnO2 nanocrystals. J Phys Chem C 112(49):19540–19546

    Article  CAS  Google Scholar 

  79. Kucharski S, Blackman C (v) Atomistic descriptions of gas-surface interactions on tin dioxide. Chemosensors

  80. Tomiyasu H, Shikata H, Takao K, Asanuma N, Taruta S, Park Y-Y (2017) An aqueous electrolyte of the widest potential window and its superior capability for capacitors. Sci Rep 7(1):45048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Maheswari N, Muralidharan G (2015) Supercapacitor behavior of cerium oxide nanoparticles in neutral aqueous electrolytes. Energy Fuels 29(12):8246–8253

    Article  CAS  Google Scholar 

  82. Quintans De Souza G (2021) A comparison between aqueous and organic electrolytes for lithium ion batteries

  83. Wang F, Borodin O, Ding MS, Gobet M, Vatamanu J, Fan X, Gao T, Eidson N, Liang Y, Sun W, Greenbaum S, Xu K, Wang C (2018) Hybrid aqueous/non-aqueous electrolyte for safe and high-energy li-ion batteries. Joule 2(5):927–937

    Article  CAS  Google Scholar 

  84. Nithya VD, Kalai Selvan R, Kalpana D, Vasylechko L, Sanjeeviraja C (2013) Synthesis of Bi2WO6 nanoparticles and its electrochemical properties in different electrolytes for pseudocapacitor electrodes. Electrochim Acta 109:720–731

    Article  CAS  Google Scholar 

  85. Goyal I, Chand P, Sunaina HA (2021) Role of electrolytes on electrochemical performance of hydrothermally grown Li2MnSiO4 cathode material for Li-ion battery application in the energy nexus frame work. Energy Nexus 2

    Article  CAS  Google Scholar 

  86. Wu H, Wang X, Jiang L, Wu C, Zhao Q, Liu X, B.a. Hu, L. Yi, (2013) The effects of electrolyte on the supercapacitive performance of activated calcium carbide-derived carbon. J Power Sources 226:202–209

    Article  CAS  Google Scholar 

  87. Turgeman M, Wineman-Fisher V, Malchik F, Saha A, Bergman G, Gavriel B, Penki TR, Nimkar A, Baranauskaite V, Aviv H, Levi MD, Noked M, Major DT, Shpigel N, Aurbach D (2022) A cost-effective water-in-salt electrolyte enables highly stable operation of a 2.15-V aqueous lithium-ion battery. Cell Rep Phys Sci 3(1)

    Article  CAS  Google Scholar 

  88. Chang J, Bard AJ (2014) Detection of the Sn(III) intermediate and the mechanism of the Sn(IV)/Sn(II) electroreduction reaction in bromide media by cyclic voltammetry and scanning electrochemical microscopy. J Am Chem Soc 136(1):311–320

    Article  CAS  PubMed  Google Scholar 

  89. Liu Y, Chen L, Jiang H, Li C (2022) Confined synthesis of SnO2 nanoparticles encapsulated in carbon nanotubes for high-rate and stable lithium-ion batteries. J Electron Mater 51(12):6637–6644

    Article  CAS  Google Scholar 

  90. Kandasamy M, Seetharaman A, Babu IM, William JJ, Muralidharan G, Sivasubramanian D, Jothivenkatachalam K, Imran M, Chakraborty B (2022) Experimental and theoretical investigations of a multiwalled carbon nanotubes/SnO2/polyaniline ternary nanohybrid electrode for energy storage. Surf Interfaces 30:101978

    Article  CAS  Google Scholar 

  91. Khan MZ, Gul IH, Baig MM, Akram MA (2023) Facile synthesis of a multifunctional ternary SnO2/MWCNTs/PANI nanocomposite: Detailed analysis of dielectric, electrochemical, and water splitting applications. Electrochim Acta 441:141816

    Article  CAS  Google Scholar 

  92. Choi S-W, Katoch A, Kim J-H, Kim SS (2015) Striking sensing improvement of n-type oxide nanowires by electronic sensitization based on work function difference. J Mater Chem C 3(7):1521–1527

    Article  CAS  Google Scholar 

  93. Jiang C, Moniz SJA, Wang A, Zhang T, Tang J (2017) Photoelectrochemical devices for solar water splitting. Chem Soc Rev 46(15):4645–4660

    Article  CAS  PubMed  Google Scholar 

  94. Kucharski S, Ferrer P, Venturini F, Held G, Walton AS, Byrne C, Covington JA, Ayyala SK, Beale AM, Blackman C (2022) Direct in situ spectroscopic evidence of the crucial role played by surface oxygen vacancies in the O2-sensing mechanism of SnO2. Chem Sci 13(20):6089–6097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Velický M, Toth PS (2017) From two-dimensional materials to their heterostructures: an electrochemist’s perspective, Applied. Mater Today 8:68–103

    Google Scholar 

  96. Shiraishi M, Ata M (2001) Work function of carbon nanotubes. Carbon 39(12):1913–1917

    Article  CAS  Google Scholar 

  97. Meng X, Bi M, Xiao Q, Gao W (2022) Ultra-fast response and highly selectivity hydrogen gas sensor based on Pd/SnO2 nanoparticles. Int J Hydrogen Energy 47(5):3157–3169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Elias Estephan is thanked for help with Raman spectroscopy. The authors acknowledge the following funding sources, Horizon EU NFFA pilot project ID 312, ETAG Grant PRG2115 and EMU baseline funding P200030VLVB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Protima Rauwel.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 414 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponte, R., Rauwel, E. & Rauwel, P. Surface-defect tailoring in SnO2 (CNT) nanomaterials via sol-gel routes and its influence on the cycling stability. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09628-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09628-y

Navigation