Skip to main content
Log in

Determination of thermal diffusivity of suspended porous silicon films by thermal lens technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the thermal diffusivity of free-standing films of nanoporous silicon has been studied. The films were obtained by electrochemical etching of p-type silicon. Measures were performed under vacuum and in the temperature range 300–600 K, so that the internal sample surface was not contaminated by ambient pollutants and hydrogen desorption did not affect significantly the surface chemistry due to high temperature effects. An investigation technique, based on thermal lensing, was adopted since it seemed to be more suitable than other techniques generally used for the determination of thermal properties of porous layers on crystalline substrates. The comparison between theoretical previsions and experimental results obtained for thin layers of known properties shows that the developed technique is reliable and of easy application for solid samples of low thermal conductivity. The diffusivity of the investigated nanoporous silicon samples is reduced with respect to the one of crystalline silicon due to both the porosity of the material and to the reduction in diffusivity of each individual nanocrystal, resulting from the enhanced boundary scattering of lattice waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter: Progr. Mater. Sc. 33, 223 (1989)

    Article  Google Scholar 

  2. A.G. Cullis, L.T. Canham, P. Calcott: J. Appl. Phys. 82, 909 (1997)

    Article  ADS  Google Scholar 

  3. G. Gesele, J. Linsmeier, V. Drach, J. Fricke, R. Arens-Fischer: J. Phys. D: Appl. Phys 30, 2911 (1997)

    Article  ADS  Google Scholar 

  4. A.N. Obraztsov, V.Y. Timoshenko, H. Okushi, H. Watanabe: Semiconductors (U.SA.) 31, 534 (1997)

    Article  ADS  Google Scholar 

  5. L.T. Canham, M.R. Houlton, W.J. Leong, C. Pickering, J.M. Keen: J. Appl. Phys. 70, 422 (1991)

    Article  ADS  Google Scholar 

  6. S.M. Prokes, O.J. Glembocki, V.M. Bermudez, R. Kaplan: Phys. Rev. B 45, 13 788 (1992)

    Article  Google Scholar 

  7. G. Benedetto, L. Boarino, R. Spagnolo: Appl. Phys. A, 64, 155 (1997); U. Bernini, P. Maddalena, E. Massera, A. Ramaglia: Opt. Commun. 168, 305 (1999)

    Article  ADS  Google Scholar 

  8. M. Bertolotti: Thin Solid Films 253, 152 (1995)

    Article  ADS  Google Scholar 

  9. A. Drost, P. Steiner, H. Moser, W. Lang: Sens. Mater. 7, 111 (1995)

    Google Scholar 

  10. U. Bernini, S. Lettieri, P. Maddalena, R. Vitiello, G. Di Francia: J. Phys.: Condens. Matter 13, 1141 (2001)

    ADS  Google Scholar 

  11. P.K. Kuo, E.D. Sendler, L.D. Favro, L. Thomas: Can. J. Phys. 64, 1168 (1986)

    Article  ADS  Google Scholar 

  12. S. Périchon, V. Lysenko, B. Remaki, D. Barbier, B. Champagnon: J. Appl. Phys. 86, 4700 (19991)

    Article  Google Scholar 

  13. J. Shen, R.D. Lowe, R.D. Snook: Chem. Phys. 165, 385 (1992)

    Article  ADS  Google Scholar 

  14. J. Shen, A.J. Soroka, R.D. Snook: J. Appl. Phys. 78, 700 (1995)

    Article  ADS  Google Scholar 

  15. H.S. Carsalaw, J.C. Jaeger: Conduction of heat in solids (Oxford, Clarendon, 1959)

  16. A. Papoulis: Systems and Tranforms with applications in Optics (McGraw-Hill, 1968)

  17. W.B. Jackson, N.M. Amer, C. Boccara, D. Fournier: Appl. Opt. 20, 1333 (1981)

    Article  ADS  Google Scholar 

  18. G. Abbate, A. Attanasio, U. Bernini, E. Ragozzino, F. Somma: J. Phys. D: Appl. Phys. 9, 1945 (1976)

    Article  ADS  Google Scholar 

  19. C. Faivre, D. Bellet, G. Dolino: J. Appl. Phys. 87, 2131 (2000)

    Article  ADS  Google Scholar 

  20. F. De Filippo, C. de Lisio, P. Maddalena, G. Lérondel, C. Altucci: Appl. Phys. A 73, 737 (2001).

    Article  ADS  Google Scholar 

  21. K. Eiermann: Kolloid Z. 198, 5 (1964)

    Article  Google Scholar 

  22. W.G. Gall, N.G. Mc Crum: J. Polym. Sci. 50, 489 (1961)

    Article  ADS  Google Scholar 

  23. R. Hoffmann, W. Knappe: Kolloid. Z. 247, 763 (1971)

    Article  Google Scholar 

  24. H.R. Shanks, P.D. Maycock, P.H. Sioles, G.C. Danielson: Phys. Rev. 130, 1743 (1963)

    Article  ADS  Google Scholar 

  25. A. Calderon, J.J. Alvarado-Gil, Y.G. Gurevich, A. Cruz-orea, I. Delgadillo, M. Vargas, L.C. Miranda: Phys. Rev. Lett. 79, 5022 (1997)

    Article  ADS  Google Scholar 

  26. H. Looyenga: Physica 31, 401 (1965)

    Article  ADS  Google Scholar 

  27. V. Lysenko, P.M. Roussel, B. Remaki, G. Delhomme, A. Dittmar, D. Barbier, V. Strikm, C. Martelet: J. Porous Mat. 7, 177 (2000)

    Article  Google Scholar 

  28. W. Lang: Thermal conductivity of Porous Silicon, Properties of Porous Silicon, ed. by L. Canham, EMIS Datareview Series, N. 18, p. 138 (Inspec, London 1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Maddalena.

Additional information

PACS

78.20.Nv; 44.30.+v; 42.65.Jx; 68.60.Dv

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernini, U., Bernini, R., Maddalena, P. et al. Determination of thermal diffusivity of suspended porous silicon films by thermal lens technique. Appl. Phys. A 81, 399–404 (2005). https://doi.org/10.1007/s00339-004-2601-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2601-6

Keywords

Navigation