Skip to main content
Log in

Optimizing Optical and Electrical Properties of Porous Silicon by Enhancing Morphology through Substrate Type and Electro-Etching Control

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Porous silicon films are heavily used in technology. Their optical and electrical characteristics should be manipulated based on their application. Such characteristics can be tailored by controlling their morphology and porosity. Various types of monocrystalline Si substrates, with (110) face and 500–550 μm thickness, with different doping concentrations and resistivity values, have been used here to prepare porous silicon films with various characteristics. Preparation conditions, such as etching time, current density, light exposure, and HF concentration in ethanol, have also been varied. Macro-, meso-, and nanoporous films were selectively prepared by controlling the preparation conditions. Measured optical and electrical characteristics for the film are affected by its morphology and porosity. The film morphology and porosity can in turn be varied depending on preparation conditions, despite the substrate resistivity and doping concentration. Among various prepared films, the nanoporous film exhibits best characteristics in terms of high uniformity, low reflectance, and low sheet resistance (28.76 Ω/sq), despite its high substrate resistivity. Porous silicon characteristics can thus be tailored as desired for optoelectronic applications, simply by controlling preparation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Youssef, M. El-Nahass, S. El-Zaiat, and M. Farag, Int. J. Semicond. Sci. Technol. 6, 1 (2016).

    Google Scholar 

  2. M.R. Poponiak, Method for gettering contaminants in monocrystalline silicon, US Patent 3,929,529, 1975.

  3. G.E. Brock, Thermal migration-porous silicon technique for forming deep dielectric isolation, US4180416A Google Patents, 1979.

  4. M. Zhang, Q. Xiao, C. Chen, L. Li, and W. Yuan, Appl. Therm. Eng. 17, 115303 (2020).

    Article  Google Scholar 

  5. M. Shrivastava, R. Kumari, M.R. Parra, P. Pandey, H. Siddiqui, and F.Z. Haque, Opt. Mater. 73, 763 (2017).

    Article  Google Scholar 

  6. V. Lehmann, and U. Gösele, Appl. Phys. Lett. 58, 856 (1991).

    Article  Google Scholar 

  7. K. Hirschman, L. Tsybeskov, S. Duttagupta, and P. Fauchet, Nature 384, 338 (1996).

    Article  Google Scholar 

  8. B. Al-Jumaili, Z. Talib, A. Ramizy, A. Aljameel, H. Baqiah, N. Ahmed, S. Paiman, J. Liew, and H. Leeb, Dig. J. Nanomater. Biostruct. 16, 297 (2021).

    Article  Google Scholar 

  9. P. Fauchet, J. Von Behren, K. Hirschman, L. Tsybeskov, and S. Duttagupta, Physica Status Solidi (a) 165, 3 (1998).

    Article  Google Scholar 

  10. P. Sharma, J. Dell, G. Parish, and A. Keating, Microporous Mesoporous Mater. 324, 111302 (2021).

    Article  Google Scholar 

  11. P.M. Raj, H. Sharma, S. Sitaraman, D. Mishra, and R. Tummala, Proc. IEEE 105, 2330 (2017).

    Article  Google Scholar 

  12. G. Gautier, M. Capelle, J. Billoue, F. Cayrel, and P. Poveda, IEEE Electron Device Lett. 33, 477 (2012).

    Article  Google Scholar 

  13. T. Thomas, Y. Kumar, J.A.R. Ramón, V. Agarwal, S.S. Guzmán, R. Reshmi, S. Pushpan, S.L. Loredo, and K. Sanal, Vacuum 184, 109983 (2021).

    Article  Google Scholar 

  14. D. Yan, S. Xia, S. Li, S. Wang, M. Tan, and S. Liu, Mater. Res. Bull. 134, 111109 (2021).

    Article  Google Scholar 

  15. R. Vercauteren, G. Scheen, J.-P. Raskin, and L.A. Francis, Sens. Actuat. A: Phys. 318, 112486 (2020).

    Article  Google Scholar 

  16. D. Dovzhenko, I. Martynov, P. Samokhvalov, E. Osipov, M. Lednev, A. Chistyakov, A. Karaulov, and I. Nabiev, Opt. Exp. 28, 22705 (2020).

    Article  Google Scholar 

  17. F.K. Başak, and E. Kayahan, Opt. Mater. 124, 111990 (2022).

    Article  Google Scholar 

  18. Z. Yan, J. Jiang, Y. Zhang, D. Yang, and N. Du, Mater. Today Nano 18, 100175 (2022).

    Article  Google Scholar 

  19. M.S. Almomani, N.M. Ahmed, M. Rashid, M. Almessiere, and A.S. Altowyan, Mater. Chem. Phys. 258, 123935 (2021).

    Article  Google Scholar 

  20. A.M. Alwan, R.A. Abbas, and A.B. Dheyab, SILICON 10, 2527 (2018).

    Article  Google Scholar 

  21. A.K. Behera, R. Viswanath, C. Lakshmanan, K. Madapu, M. Kamruddin, and T. Mathews, Microporous Mesoporous Mater. 273, 99 (2019).

    Article  Google Scholar 

  22. P. Granitzer, K. Rumpf, M. Reissner, H. Michor, Metal Filled Light Emitting Porous Silicon as Platform for Tunable Optical and Magnetic Properties, in: ECS Meeting Abstracts, IOP Publishing, 1434 (2021).

  23. N. Grevtsov, E. Chubenko, V. Bondarenko, I. Gavrilin, A. Dronov, and S. Gavrilov, Thin Solid Films 734, 138860 (2021).

    Article  Google Scholar 

  24. N.H. Harb, and F.A.-H. Mutlak, Optik 246, 167800 (2021).

    Article  Google Scholar 

  25. S. Park, B. Yoo, Capacitive Humidity Sensing Characeristics of Porous Silicon Oxide Via Electrodeposition Assisted Stripping and Metal Assisted Chemical Etching Process, in: ECS Meeting Abstracts, IOP Publishing, 2267 (2019).

  26. M. Rack, Y. Belaroussi, K.B. Ali, G. Scheen, B.K. Esfeh, and J.-P. Raskin, IEEE Trans. Electron Devices 65, 2018 (1887).

    Google Scholar 

  27. M. Rahmani, S. Amdouni, M.-A. Zaibi, and A. Meftah, J. Mater. Sci. Mater. Electron. 32, 4321 (2021).

    Article  Google Scholar 

  28. R. Ramadan, and R.J. Martín-Palma, J. Nanophoton. 14, 040501 (2020).

    Article  Google Scholar 

  29. N. Reta, A. Michelmore, C.P. Saint, B. Prieto-Simon, and N.H. Voelcker, ACS Sens. 4, 1515 (2019).

    Article  Google Scholar 

  30. C. Romanitan, P. Varasteanu, I. Mihalache, D. Culita, S. Somacescu, R. Pascu, E. Tanasa, S.A. Eremia, A. Boldeiu, and M. Simion, Sci. Rep. 8, 1 (2018).

    Article  Google Scholar 

  31. K. Rumpf, P. Granitzer, R. Gonzalez-Rodriguez, J. Coffer, M. Reissner, Assessment of Novel Magnetic/Semiconducting Composites-FePt Nanoparticles Grown within Porous Silicon and Silicon Nanotubes, in: ECS Meeting Abstracts, IOP Publishing, 1462 (2021).

  32. S. Sarmah, M. Das, and D. Sarkar, Mater. Lett. 297, 129972 (2021).

    Article  Google Scholar 

  33. P. Sondhi, K.J. Stine, in Nanofibers-Synthesis, Properties and Applications, ed. by B. Kumar (IntechOpen, 2020). https://doi.org/10.5772/intechopen.94604

  34. N. Selmane, A. Cheknane, N. Gabouze, N. Maloufi, M. Aillerie, Experimental study of optical and electrical properties of ZnO nano composites electrodeposited on n-porous silicon substrate for photovoltaic applications, in: E3S Web of Conferences, EDP Sciences, 00155 (2017).

  35. D. Vlasyuk, A. Mamykin, V. Moshnikov, and E. Muratova, Glass Phys. Chem. 41, 551 (2015).

    Article  Google Scholar 

  36. Y. Luo, L. Huang, J. Liu, Z. Wang, Q. Chen, and Y. Chen, Microporous Mesoporous Mater. 331, 111672 (2022).

    Article  Google Scholar 

  37. R. Ramadan, and R.J. Martín-Palma, Nanomaterials 12, 271 (2022).

    Article  Google Scholar 

  38. W. Li, D. Liu, L. Song, H. Li, S. Dai, Y. Su, Q. Li, J. Li, and T. Zheng, Food Funct. 13, 6129 (2022).

    Article  Google Scholar 

  39. P. Jiang, and J. Li, RSC Adv. 12, 7892 (2022).

    Article  Google Scholar 

  40. R. Moretta, L. De Stefano, M. Terracciano, and I. Rea, Sensors 21, 1336 (2021).

    Article  Google Scholar 

  41. A.M. Alwan, H.R. Abed, and R.B. Rashid, Solid-State Electron. 181, 108019 (2021).

    Article  Google Scholar 

  42. L. Canham, Handbook of Porous Silicon (Springer, Berlin, 2014).

    Book  Google Scholar 

  43. P. Myers, M. J. Sailor, Chromatographia 76, 721 (2013). https://doi.org/10.1007/s10337-013-2453-3

  44. C. Miao, L. Liang, F. Zhang, S. Chen, K. Shang, J. Jiang, Y. Zhang, and J. Ouyang, Int. J. Min. Metall. Mater. 29, 424 (2022).

    Article  Google Scholar 

  45. G. Godet, E. Augendre, J. Lugo-Alvarez, H. Jacquinot, F.X. Gaillard, T. Lorne, E. Rolland, T. Taris, and F. Servant, IEEE Trans. Electron Devices 67, 4654 (2020).

    Article  Google Scholar 

  46. S.K. Saxena, G. Sahu, V. Kumar, P. Sahoo, P.R. Sagdeo, and R. Kumar, Mater. Res. Express 2, 036501 (2015).

    Article  Google Scholar 

  47. F. Karbassian, in Porosity: Process, Technologies and Applications, ed. by T. Ghrib (IntechOpen, 2018), p. 3. https://doi.org/10.5772/intechopen.72910

  48. R. Smith, and S. Collins, J. Appl. Phys. 71, R1 (1992).

    Article  Google Scholar 

  49. V. Torres-Costa, F. Agulló-Rueda, R. Martín-Palma, and J. Martínez-Duart, Opt. Mater. 27, 1084 (2005).

    Article  Google Scholar 

  50. Y.M. Spivak, S. Mjakin, V. Moshnikov, M. Panov, A. Belorus, and A. Bobkov, J. Nanomater. (2016). https://doi.org/10.1155/2016/2629582

    Article  Google Scholar 

  51. V. Lehmann, J. Electrochem. Soc. 140, 2836 (1993).

    Article  Google Scholar 

  52. V. Lehmann, R. Stengl, and A. Luigart, Mater. Sci. Eng. B 69, 11 (2000).

    Article  Google Scholar 

  53. H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, Mater. Sci. Eng. R: Rep. 39, 93 (2002).

    Article  Google Scholar 

  54. U. Grüning, and A. Yelon, Thin Solid Films 255, 135 (1995).

    Article  Google Scholar 

  55. S. Fellah, R. Wehrspohn, N. Gabouze, F. Ozanam, and J.-N. Chazalviel, J. Luminescence 80, 109 (1998).

    Article  Google Scholar 

  56. T. Jiang, R. Zhang, Q. Yin, W. Zhou, Z. Dong, N.A. Chernova, Q. Wang, F. Omenya, and M.S. Whittingham, J. Mater. Sci. 52, 3670 (2017).

    Article  Google Scholar 

  57. M.A. Fakhri, B.G. Rashid, N.H. Numan, B.A. Bader, F.G. Khalid, T.A. Zaker, E.T. Salim, Synthesis of nano porous silicon heterostructures for optoelectronic applications, in: AIP Conference Proceedings, AIP Publishing LLC, 020016 (2018).

  58. R. Suryana, M. Mas’ud, O. Nakatsuka, Influence of Reactive Ion Etching Time on Fabrication of Porous Silicon on Si (110) Substrates, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 012139 (2021).

  59. G. Lérondel, R. Romestain, and S. Barret, J. Appl. Phys. 81, 6171–6178 (1997).

    Article  Google Scholar 

  60. G.G. Al Nuaimi, J. Educ. Sci. 30, 28 (2021).

    Article  Google Scholar 

  61. S. Zimin, Semiconductors 34, 353 (2000).

    Article  Google Scholar 

  62. D. Hamm, T. Sakka, and Y.H. Ogata, Electrochemistry 71, 853 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

Ali Cheknane and Naceur Selmane acknowledge financial support from Amar Telidji University of Laghouat through the PRFU project /N° A10N01UN030120220002, entitled: “Contribution à l’étude des propriétés physico-chimiques des nouveaux matériaux: Applications dans le domaine des énergies renouvelables.” They also thank the General Directorate of Scientific Research and Technological Development (DGRSDT), Algérie. No funding was received by Hikmat S. Hilal.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naceur Selmane, Ali Cheknane or Hikmat S. Hilal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selmane, N., Cheknane, A. & Hilal, H.S. Optimizing Optical and Electrical Properties of Porous Silicon by Enhancing Morphology through Substrate Type and Electro-Etching Control. JOM 75, 1230–1241 (2023). https://doi.org/10.1007/s11837-023-05695-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05695-9

Navigation