Skip to main content

Mechanical and Electrical Response Models of Carbon Nanotubes

  • Chapter
  • First Online:
Carbon Nanotube Enhanced Aerospace Composite Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 188))

  • 2849 Accesses

Abstract

Carbon nanotubes have remarkable mechanical and electrical properties. One promising feature is their electrical resistance that strongly depends on mechanical deformation. This, in combination with the fact that nanotubes can be dispersed into polymeric matrices, makes them ideal constituents for the development of novel multifunctional materials and devices. When dispersed into an insulating polymer, nanotubes are known to induce conductive behavior to the composite. This is attributed to the formation of conductive nanotube networks due to percolation. When a nanocomposite is mechanically deformed, load is transferred to the nanotubes, as well. As they deform and rearrange, their electrical properties change and the percolation networks are distorted. This effect is studied in this chapter using three models: (i) an atomistic molecular mechanics approach for prediction of the mechanical response of carbon nanotubes, (ii) a subatomic tight-binding approach for prediction of the piezeoresistive response of individual carbon nanotubes, and (iii) a homogenized microscale model for prediction of the piezoresistive response of carbon nanotube doped insulating polymers. Results seem to be in agreement with experimental results for small deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksamija, Z., Ravaioli, U.: Boltzmann transport simulation of single-walled carbon nanotubes. J. Comput. Electron. 7, 315–318 (2008)

    Article  Google Scholar 

  • Aksamija, Z., Mohamed, M.Y., Ravaioli, U.: Parallel implementation of Boltamann transport simulation of carbon nanotubes. In: 13th International Workshop on Computational Electronics – IWCE ‘09, Beijing, pp. 1–4 (2009)

    Google Scholar 

  • Alexopoulos, N.D., Bartholome, C., Poulin, P., Marioli-Riga, Z.: Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers. Compos. Sci. Technol. 70(2), 260–271 (2010)

    Article  Google Scholar 

  • Alig, I., Skipa, T., Lellinger, D., Potschke, P.: Destruction and formation of a carbon nanotube network in polymer melts: rheology and conductivity spectroscopy. Polymer 49(16), 3524–3532 (2008)

    Article  Google Scholar 

  • Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, New York (1989)

    Google Scholar 

  • Arroyo, M., Belytschko, T.: An atomistic-based finite deformation membrane for single layer crystalline films. J. Mech. Phys. Solid 50, 1941–1977 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Ashcroft, N.W., Mermin, N.D.: Solid State Physics. W. B. Saunders Company, Philadelphia (1976a)

    Google Scholar 

  • Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Holt - Saunders International, Ed. Holt, Rinehart and Winston, New York (1976b)

    Google Scholar 

  • Avouris, P., Collins, P.G.: Nanotubes for electronics. Sci. Am. 283, 38–45 (1998)

    Google Scholar 

  • Avouris, P., et al.: Electrical properties of carbon nanotubes: spectroscopy, localization and electrical breakdown. In: Tomanek, D., Enbody, R.J. (eds.) Science and Applications of Nanotubes. Kluwer Academic Publishers Group, New York (2000)

    Google Scholar 

  • Avouris, P., Radosavlevic, M., Wind, S.J.: Carbon nanotubes for electronics and optoelectronics. In: Applied Physics of Carbon Nanotubes, pp. 227–251. Springer, Berlin (2005)

    Chapter  Google Scholar 

  • Ayuela, A., Chico, L., Jaskolski, W.: Electronic band structure of carbon nanotube superlattices form first-principles calculations. Phys. Rev. B 77, 085435 (2008)

    Article  Google Scholar 

  • Bagwell, R.F., Orlando, T.P.: Landauer’s conductance formula and its generalization to finite voltages. Phys. Rev. B 40, 3 (1989)

    Google Scholar 

  • Balberg, I.: Tunneling and nonuniversal conductivity in composite materials. Phys. Rev. Lett. 59, 1305–1308 (1987)

    Article  Google Scholar 

  • Barber, A.H., Cohen, S.R., Wagner, D.H.: Measurement of carbon-polymer interfacial strength. Appl. Phys. Lett. 82, 4140–4142 (2003)

    Article  Google Scholar 

  • Bernholc, J., Brenner, D., Nardelli, M.B., Meunier, V., Roland, C.: Mechanical and electrical properties of nanotubes. Annu. Rev. Mater. Res. 32, 347–375 (2002)

    Article  Google Scholar 

  • Bloch, F.: Ãœber die Quantenmechanik der Elektronen in Kristallgittern. Zeithschrift für Physik 52, 555 (1928)

    Article  MATH  Google Scholar 

  • Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)

    Article  Google Scholar 

  • Bruus, H.: Introduction to Nanotechnology. Technical University of Denmark, Lyngby (2004)

    Google Scholar 

  • Burkert, U., Allinger, N.L.: Molecular Mechanics. American Chemical Society, Washington, DC (1982)

    Google Scholar 

  • Chang, T.-E., Kisluik, A., Rhodes, S.M., Brittain, W.J., Sokolov, A.P.: Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composites. Polymer 47, 7740–7746 (2009)

    Article  Google Scholar 

  • Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72–79 (1952)

    Article  Google Scholar 

  • Dang, Z.-M., Yao, S.-H., Xu, H.-P.: Effect of tensile strain on morphology and dielectric property in nanotube/polymer nanocomposites. Appl. Phys. Lett. 90, 012907 (2007)

    Article  Google Scholar 

  • Datta, S.: Electrical resistance: an atomistic view. Nanotechnology 15, S433 (2004)

    Article  Google Scholar 

  • Deng, Z., et al.: Nanotube manipulation with focused ion beam. Appl. Phys. Lett. 88(2), 023119 (2006)

    Article  Google Scholar 

  • Dharap, P., Li, Z., Nagarajaiah, S., Barrera, E.V.: Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology 15, 379–382 (2004)

    Article  Google Scholar 

  • Durrant, A.: Quantum Physics of Matter. Taylor & Francis Ltd., Bristol (2000)

    MATH  Google Scholar 

  • Fraysse, J., Minett, A.I., Jaschinski, O., Duesberg, G.S., Roth, S.: Carbon nanotubes acting like actuators. Carbon 40(10), 1735–1739 (2002)

    Article  Google Scholar 

  • Gao, X.-L., Li, K.: A Shear-Lag model for carbon nanotube-reinforced polymer composites. Int. J. Solid Struct. 42, 1649–1667 (2005)

    Article  MATH  Google Scholar 

  • Gartstein, Y.N., Zakhidov, A.A., Baughman, R.H.: Mechanical and electromechanical coupling in carbon nanotube distortions. Phys. Rev. B 68(11), 115415 (2003)

    Article  Google Scholar 

  • Gibbs, J.W.: Elements of Vector Analysis, Arranged for the Use of Students in Physics. Yale University, New Haven (1881)

    Google Scholar 

  • Gibbs J.W., Wilson, E.B.: Vector Analysis. Dover Publications, New York (reprint), 1902 (1960)

    Google Scholar 

  • Griffiths, D.: Introduction to Quantum Mechanics, 2nd edn. Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  • Grimmett, G.: Percolation. Springer, New York (1989)

    MATH  Google Scholar 

  • Grow, R.J., Wang, Q., Cao, J., Wang, D., Dai, H.: Piezoresistance of carbon nanotubes on deformable thin-film membranes. Appl. Phys. Lett. 86(9), 093104 (2005)

    Article  Google Scholar 

  • Guo, W., Guo, Y.: Giant electrostrictive deformation in carbon nanotubes. Phys. Rev. Lett. 91, 115501 (2003)

    Article  Google Scholar 

  • Hamada, H., Sawada, S., Oshiyama, A.: New one-dimensional conductors: graphitic microtubules. Phys. Rev. Lett. 68, 1579–1581 (1992)

    Article  Google Scholar 

  • Haque, A., Ramasetty, A.: Theoretical study of stress transfer in carbon nanotubes reinforced polymer matrix composites. Compos. Struct. 71, 68–77 (2005)

    Article  Google Scholar 

  • Huang, K.: Statistical Mechanics. Wiley, New York (1987)

    MATH  Google Scholar 

  • Hutter, K., Johnk, K.: Continuum Methods of Physical Modeling: Continuum Mechanics, Dimensional Analysis, Turbulence. Springer, Berlin/New York (2004)

    Google Scholar 

  • Javey, A., et al.: High-field quasibalistic transport in short carbon nanotubes. Phys. Rev. Lett. 92(10), 106804 (2004)

    Article  Google Scholar 

  • Kang, M.S., et al.: The fabrication of polyaniline/single-walled carbon nanotube fibers containing a highly-oriented filler. Nanotechnology 20, 085701 (2009)

    Article  Google Scholar 

  • Kaxiras, E.: Atomic and Electronic Structure of Solids. Cambridge University Press, New York (2003)

    Book  Google Scholar 

  • Kempel, F., Schlarb, A.K.: Strain sensing with nanoscale carbon fiber – epoxy composites. Appl. Mech. Mater. 13–14, 239–245 (2008)

    Article  Google Scholar 

  • Kesten, H.: Percolation Theory for Mathematicians. Birkhauser, Boston (1982)

    MATH  Google Scholar 

  • Koziol, K., et al.: High-performance carbon nanotube fiber. Science 21, 1892–1895 (2007)

    Article  Google Scholar 

  • Kumar, S., Murthy, J.Y., Alam, M.A.: Electrical and thermal transport in thin-film nanotube composites with applications to macroelectronics. Int. J. Nanomanuf. 2, 226–252 (2008)

    Article  Google Scholar 

  • Laboratoire Francis Perrin CNRS: Aligned Carbon Nanotubes. [Online]. http://www-lfp.cea.fr/ast_visu.php?num=440&lang=ang (2004)

  • Landauer, R.: Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223 (1957)

    Article  MathSciNet  Google Scholar 

  • Levine, I.N.: Quantum Chemistry. Prentice Hall, Englewood Cliffs (1991)

    Google Scholar 

  • Li, C., Chou, T.-W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solid Struct. 40(10), 2487–2499 (2003)

    Article  MATH  Google Scholar 

  • Liu, B., Jiang, J., Johnson, H.T., Huang, Y.: The influence of mechanical deformation on the electrical properties of single wall carbon nanotubes. J. Mech. Phys. Solid 52(1), 1–26 (2004)

    Article  Google Scholar 

  • Liu, H., Chiashi, S., Ishiguro, M., Homma, Y.: Manipulations of single-walled carbon nanotubes with a tweezers tip. Nanotechnology 19, 445716 (2008)

    Article  Google Scholar 

  • Loh, K.J., Lynch, J.P., Shim, B.S., Kotov, N.A.: Tailoring piezoresistive sensitivity of multilayer carbon nanotubes composite strain sensors. J. Intell. Mater. Syst. Struct. 19, 747–764 (2007)

    Article  Google Scholar 

  • Los Alamos National Laboratory: NewsBulletin. [Online]. http://www.lanl.gov/news/index.php?fuseaction=nb.story&story_id=8900&nb_date=2006-08-31 (2006)

  • Lu, C., Mai, Y.W.: Anomalous electrical conductivity and percolations in carbon nanotube composites. J. Mater. Sci. 43, 6012–6015 (2009)

    Article  Google Scholar 

  • Luo, X., Qian, G., Fei, W., Wang, E.G., Chen, C.: Systematic study of β-SiC surface structures by molecular-dynamics simulations. Phys. Rev. B 57, 9234–9240 (1998)

    Article  Google Scholar 

  • Martin, R.M.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  • Massimi, M.: Pauli’s Exclusion Principle. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  • Minot, E.D.: Tuning the band structure of nanotubes. PhD thesis, Cornell University (2004)

    Google Scholar 

  • Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)

    Article  Google Scholar 

  • Morse, P.M.: Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57–64 (1929)

    Article  MATH  Google Scholar 

  • Muller, P.: Glossary of terms used in physical organic chemistry (IUPAC recommendations 1994). Pure Appl. Chem. 66(5), 1077–1184 (1994)

    Article  Google Scholar 

  • Nairn, J.A.: On the use of Shear-Lag methods for analysis of stress transfer in unidirectional composites. Mech. Mater. 26, 63–80 (1997)

    Article  Google Scholar 

  • Nessim, G.D., et al.: Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment. Nanoletter 8, 3587–3593 (2008)

    Article  Google Scholar 

  • Park, M., Kim, H., Youngblood, J.P.: Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films. Nanotechnology 19, 055705 (2008)

    Article  Google Scholar 

  • Pham, G.T., Park, Y.-B., Liang, Z., Zhang, C., Wang, B.: Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos. Part B Eng. 39(1), 209–216 (2008)

    Article  Google Scholar 

  • Pike, G.E., Seager, C.H.: Percolation and conductivity: a computer study I. Phys. Rev. B 10, 1421–1434 (1974)

    Article  Google Scholar 

  • Pozdnyakov, D.V., Galenchik, V.O., Komarov, F.F., Borzdov, V.M.: Electron transport in armchair single-wall carbon nanotubes. Phys. E 33(2), 336–342 (2006)

    Article  Google Scholar 

  • Ramasubramaniam, R., Chen, J.: Homogeneous carbon nanotube-polymer composites for electrical applications. Appl. Phys. Lett. 83, 2928–2930 (2003)

    Article  Google Scholar 

  • Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge University Press, New York (1995)

    Google Scholar 

  • Razavy, M.: Quantum Theory of Tunneling. World Scientific, River Edge (2003)

    Book  MATH  Google Scholar 

  • Reich, S., Thomsen, C., Ordejon, P.: Electronics band structure of isolated and bundled carbon nanotubes. Phys. Rev. B 65, 155411 (2002)

    Article  Google Scholar 

  • Saito, R., Fujita, M., Dresselhaus, G., Dressehaus, M.S.: Electronic structure of graphene tubules based on C60. Phys. Rev. B 46, 1804–1811 (1992)

    Article  Google Scholar 

  • Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Electronics structure of double-layer graphene tubules. J. Appl. Phys. 73(2), 494 (1993)

    Article  Google Scholar 

  • Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)

    Book  Google Scholar 

  • Sandler, J.K.W., Kirk, J.E., Kinloch, I.A., Shaffer, M.S.P., Windle, A.H.: Ultra-Low electrical percolations threshold in carbon-nanotube-epoxy composites. Polymer 44(19), 5893–5899 (2003)

    Article  Google Scholar 

  • Seidel, G.D., Lagoudas, D.C.: Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 38, 884–907 (2006)

    Article  Google Scholar 

  • Seidel, G.D., Lagoudas, D.C.: Micromechanical modeling of polymer nanocomposites for use as multifunctional models. In: Collection of Technical Papers: AIAA/ASME/ASCE/AHS/ASC Structures, Structures Dynamics, and Materials Conference, p. 1947 (2008)

    Google Scholar 

  • Simoes, R., et al.: Low percolation transition in carbon nanotube networks dispersed in a polymeric matrix: dielectric properties and experiments. Nanotechnology 20, 035703 (2009)

    Article  Google Scholar 

  • Sinha, N., Ma, J., Yeow, T.W.: Carbon nanotube-based sensors. J. Nanosci. Nanotechnol. 6, 573–590 (2006)

    Article  Google Scholar 

  • Slater, J.C.: Wavefunction in a periodic potential. Phys. Rev. 51, 846–851 (1937)

    Article  Google Scholar 

  • Slater, J.C.: An augmented plane wave method for the periodic potential problem. Phys. Rev. 92, 603–608 (1953)

    Article  MATH  Google Scholar 

  • Slater, J.C., Koster, G.F.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954)

    Article  MATH  Google Scholar 

  • Stankovich, S., et al.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  • Suli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge University Press, New York (2003)

    Book  Google Scholar 

  • Tersoff, J.: Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879–2882 (1998)

    Article  Google Scholar 

  • Thostenson, E.T., Ziaee, S., Chou, T.-P.: Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. Compos. Sci. Technol. 69, 801–804 (2009)

    Article  Google Scholar 

  • Tian, W., Datta, S.: Aharonov-Bohm-type effect in graphene tubules: a Landauer approach. Phys. Rev. B 49, 5097–5101 (1994)

    Article  Google Scholar 

  • Ural, A.: Electronic properties of carbon nanotube percolations films and nanotube film-semiconductor junctions. In: Fullerenes, Nanotubes and Carbon Nanostructures – 215th ESC Meeting, San Francisco, CA, pp. 43–45 (2009)

    Google Scholar 

  • Vavouliotis, A.I.: New approach in progressive damage monitoring under mechanical loading in fibrous carbon nanotube composites. PhD thesis, University of Patras, Patras (2009)

    Google Scholar 

  • Wallace, P.R.: The band theory of graphite. Phys. Rev. 71, 9 (1947)

    Article  Google Scholar 

  • Xiao, S.P., Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics. Comput. Method Appl. Mech. Eng. 193, 1645–1669 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao, K.Q., Zhang, L.C.: The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix. J. Mater. Sci. 39, 4481–4486 (2004)

    Article  Google Scholar 

  • Yang, L., Anantram, M.P., Han, J., Lu, J.P.: Band-gap change of carbon nanotubes: effect of small uniaxial and torsional strain. Phys. Rev. B 60(19), 13874–13878 (1999)

    Article  Google Scholar 

  • Ypma, T.J.: Historical development of the Newton-Raphson method. SIAM Rev. 37(4), 531–535 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, X., et al.: Spray deposited fluoropolymer/multi-walled carbon nanotube composite films with high dielectric permittivity at low percolation threshold. Carbon 47, 561–569 (2009)

    Article  Google Scholar 

  • Zhou, C., Kong, J., Dai, H.: Intrinsic electrical properties of individual single-walled carbon nanotubes with small band-gaps. Phys. Rev. Lett. 84, 5604–5607 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by the K. Karatheodori program (University of Patras) and the NOESIS project (EU FP6-Aerospace). The authors gratefully acknowledge this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Saravanos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Theodosiou, T.C., Saravanos, D.A. (2013). Mechanical and Electrical Response Models of Carbon Nanotubes. In: Paipetis, A., Kostopoulos, V. (eds) Carbon Nanotube Enhanced Aerospace Composite Materials. Solid Mechanics and Its Applications, vol 188. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4246-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4246-8_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4245-1

  • Online ISBN: 978-94-007-4246-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics