Skip to main content

Advertisement

Log in

Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru(001)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Time-resolved two-photon photoelectron spectroscopy is used to study the dynamics of non-equilibrium electron and hole distributions at bare and D2O-covered Ru(001) following optical excitation (55-fs, 800-nm pulses) with variable fluence (0.04–0.6 mJ cm-2). Within the first 0.5 ps we observe an ultra-fast transient of the excited-carrier population and energy density at the surface which is accompanied by pronounced deviations of the electron-energy distribution from a (thermalized) Fermi–Dirac distribution. Comparison of the transient energy density of the photoexcited electrons at the surface with predictions of the two-temperature model provides fair agreement up to 400 fs, but exhibits a systematically lower energy density at later times, where electrons and phonons are equilibrated. We propose that this reduced energy density at the surface originates from ultra-fast energy transport of non-thermal electrons into the bulk in competition to electron–phonon coupling at the surface. This is corroborated by extending the two-temperature model to account for non-thermal, photoexcited electrons, whereby quantitative agreement with experiment can only be achieved if ballistic transport and reduced electron–phonon coupling is incorporated for non-thermal electrons. Implications for surface femtochemistry are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Drude: Ann. Phys. (Leipzig) 1, 566 (1900)

    Google Scholar 

  2. M. Kaveh, N. Wisner: Adv. Phys. 33, 257 (1984)

    Google Scholar 

  3. J. Shah: Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, 2nd edn. (Springer, Berlin 1999)

  4. P.M. Echenique, J.M. Pitarke, E.V. Chulkov, A. Rubio: Chem. Phys. 251, 1 (2000)

    Article  Google Scholar 

  5. D. Pines, P. Nozieres: The Theory of Quantum Liquids (Benjamin, New York 1966)

  6. H. Petek, S. Ogawa: Prog. Surf. Sci. 56, 239 (1997)

    Article  Google Scholar 

  7. N. Del Fatti, C. Voisin, M. Achermann, S. Tzotzakis, D. Christofilos, F. Vallée: Phys. Rev. B 61, 16956 (2000)

    Article  Google Scholar 

  8. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man: Sov. Phys. JETP 39, 375 (1974)

    Google Scholar 

  9. H.E. Elsayed-Ali, T.B. Norris, M.A. Pessot, G.A. Mourou: Phys. Rev. Lett. 58, 1212 (1987)

    Article  Google Scholar 

  10. R.W. Schoenlein, W.Z. Lin, J.G. Fujimoto, G.L. Eesley: Phys. Rev. Lett. 58, 1680 (1987)

    Article  Google Scholar 

  11. R.H.M. Groeneveld, R. Sprik, A. Lagendijk: Phys. Rev. B 51, 11433 (1995)

    Article  Google Scholar 

  12. W.S. Fann, R. Storz, H.W.K. Tom, J. Bokor: Phys. Rev. Lett. 68, 2834 (1992); Phys. Rev. B 46, 13592 (1992)

    Article  Google Scholar 

  13. C.-K. Sun, F. Vallée, L.H. Acioli, E.P. Ippen, J.G. Fujimoto: Phys. Rev. B 50, 15337 (1994)

    Article  Google Scholar 

  14. V.E. Gusev, O.B. Wright: Phys. Rev. B 57, 2878 (1998)

    Article  Google Scholar 

  15. J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, E. Matthias: Chem. Phys. 251, 237 (2000)

    Article  Google Scholar 

  16. B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon: Phys. Rev. B 65, 214303 (2002)

    Article  Google Scholar 

  17. M. Merschdorf, C. Kennerknecht, K. Willig, W. Pfeiffer: New J. Phys. 4, 95 (2002)

    Article  Google Scholar 

  18. G. Moos, C. Gahl, R. Fasel, M. Wolf, T. Hertel: Phys. Rev. Lett. 87, 267402 (2001)

    Article  Google Scholar 

  19. G. Gergen, H. Nienhaus, W.H. Weinberg, E.W. McFarland: Science 294, 2521 (2001)

    Article  Google Scholar 

  20. T. Greber: Surf. Sci. Rep. 28, 3 (1997)

    Article  Google Scholar 

  21. B.N.J. Persson, M. Persson: Solid State Commun. 36, 175 (1980)

    Article  Google Scholar 

  22. L. Diekhöner, L. Hornekaer, H. Mortensen, E. Jensen, A. Baurichter, V.V. Petrunin, A. Luntz: J. Chem. Phys. 117, 5018 (2002)

    Article  Google Scholar 

  23. M. Brandbyge, P. Hedegard, T.F. Heinz, J.A. Misewich, D.N. Newns: Phys. Rev. B 52, 6042 (1995)

    Article  Google Scholar 

  24. R.R. Cavanagh, D.S. King, J.C. Stephenson, T.F. Heinz: J. Chem. Phys. 97, 786 (1993)

    Google Scholar 

  25. J.A. Misewich, T.F. Heinz, D.M. Newns: Phys. Rev. Lett. 68, 3737 (1992)

    Article  Google Scholar 

  26. S. Deliwala, R.J. Finlay, J.R. Goldman, T.H. Her, W.D. Mieher, E. Mazur: Chem. Phys. Lett. 242, 617 (1995)

    Article  Google Scholar 

  27. J.A. Misewich, S. Nakabayashi, P. Weigand, M. Wolf, T.F. Heinz: Surf. Sci. 363, 204 (1996)

    Article  Google Scholar 

  28. M. Bonn, S. Funk, Ch. Hess, D.N. Denzler, C. Stampfl, M. Scheffler, M. Wolf, G. Ertl: Science 285, 1042 (1999)

    Article  Google Scholar 

  29. M. Bonn, D.N. Denzler, S. Funk, M. Wolf, S.-S. Wellershoff, J. Hohlfeld: Phys. Rev. B 61, 1101 (2000)

    Article  Google Scholar 

  30. C. Lei, M. Bauer, K. Read, R. Tobey, Y. Liu, T. Popmintchev, M.M. Murnane, H.C. Kapteyn: Phys. Rev. B 66, 245420 (2002)

    Article  Google Scholar 

  31. D.N. Denzler, Ch. Hess, S. Funk, G. Ertl, M. Bonn, Ch. Frischkorn, M. Wolf: In Femtochemistry and Femtobiology: Ultrafast Dynamics in Molecular Science, ed. by A. Douhal, J. Santamaria (World Scientific, Singapore 2002) p. 652

  32. Physik Daten, ed. by H. Behrens, G. Ebel (Fachinformationszentrum Karlsruhe 1981)

  33. T. Hertel, R. Fasel, G. Moos: Appl. Phys. A 75, 449 (2002)

    Google Scholar 

  34. D.N. Denzler, C. Gahl, S. Wagner, R. Dudek, J. Stähler, C. Frischkorn, U. Bovensiepen, M. Wolf, G. Ertl: to be published

  35. G. Held, D. Menzel: Surf. Sci. 316, 92 (1994)

    Article  Google Scholar 

  36. M. Wolf, A. Hotzel, E. Knoesel, D. Velic: Phys. Rev. B 59, 5926 (1999)

    Article  Google Scholar 

  37. A. Seitsonen: PhD thesis, Technische Universität Berlin (2002) [http://edocs.tu-berlin.de/diss/2000/seitsonen_ari.htm]

  38. M.I. Kaganov, I.M. Lifshitz, L.V. Tanatarov: Sov. Phys. JETP 4, 173 (1957)

    MATH  Google Scholar 

  39. D. Palik: Handbook of Optical Constants of Solids III (Academic, London 1998)

  40. Ch. Kittel: Introduction to Solid State Physics, 7th edn. (Wiley, New York 1996)

  41. H. Schober, P.H. Dederichs: Phonon States of Elements. Electron States and Fermi Surfaces of Alloys, In Landolt Börnstein New Ser., Vol. III/13a (Springer, Berlin 1981) p. 130

  42. A.P. Cracknell: Electron States and Fermi Surfaces of Elements, In Landolt Börnstein New Ser., Vol. III/13c (Springer, Berlin 1984) p. 315

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lisowski.

Additional information

PACS

78.47.+p; 71.38.-k; 73.40.-c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisowski, M., Loukakos, P., Bovensiepen, U. et al. Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru(001). Appl Phys A 78, 165–176 (2004). https://doi.org/10.1007/s00339-003-2301-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2301-7

Keywords

Navigation