Skip to main content
Log in

Scleractinian corals rely on heterotrophy in highly turbid environments

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Coral communities can survive in stressful environments; however, the mechanisms corals employ to endure challenging conditions are poorly understood. This study assessed how the heterotrophy of three coral genera (Acropora spp., Porites spp. and Platygyra spp.) varies among sites in the Dampier Archipelago, Western Australia, exposed to different levels of turbidity. Stable isotope δ13C and δ15N analysis of coral host and endosymbionts were combined with modern Bayesian isotopic niche analysis to demonstrate that heterotrophy in all three coral genera increased in highly turbid environments. While all coral genera were found to be more heterotrophic in highly turbid waters, Porites spp. favoured heterotrophy across all levels of turbidity, whereas Platygyra spp. and Acropora spp. were less heterotrophic at sites with lower turbidity. Thus, some scleractinian corals can alter their feeding strategies in response to turbidity levels. As nearshore coral reefs experience increased and prolonged turbidity with intensifying climate change and anthropogenic development, the knowledge gained from this study will allow for improved environmental impact assessment and predictive modelling for future coral reef conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Samples were collected under DBCA permit #FO25000234 and DPIRD exemption # 3671.

References

  • Al Kaabi, M. R., Zhao, J., Charron, C., Gherboudj, I., Lazzarini, M., & Ghedira, H. (2013, September). Developing satellite-based tool for water turbidity mapping in the Arabian Gulf: Abu Dhabi case study. In 2013 OCEANS-San Diego (pp. 1–4). IEEE.

  • Alamaru A, Loya Y, Brokovich E, Yam R, Shemesh A (2009) Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: Insights from stable isotope analysis of total organic material and lipids. Geochim Cosmochim Acta 73(18):5333–5342

    Article  CAS  Google Scholar 

  • Anthony KRN (1999) Coral suspension feeding on fine particulate matter. J Exp Mar Biol Ecol 232(1):85–106

    Article  Google Scholar 

  • Anthony K (2000) Enhanced particle-feeding capacity of corals on turbid reefs (Great Barrier Reef, Australia). Coral Reefs 19(1):59–67

    Article  Google Scholar 

  • Anthony KR, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252(2):221–253

    Article  CAS  PubMed  Google Scholar 

  • Anthony, KRN, and Larcombe, P. (2002) Coral reefs in turbid waters: sediment-induced stresses in corals and likely mechanisms of adaptation. In: Moosa, M. Kasim, Soemodihardjo, Subagjo, Soegiarto, Aprilani, Romimohtarto, Kasijan, Nontji, Anugerah, Soekarno, and Suharsono, (eds.) Proceedings of the 9th International Coral Reef Symposium. Ministry of Environment, Indonesian Institute of Sciences and International Society for Reef Studies, Bali, Indonesia, pp. 239–244.

  • Babcock R, Thomson D, Haywood M, Vanderklift M, Pillans R, Rochester W, Miller M, Speed C, Shedrawi G, Field S (2020) Recurrent coral bleaching in north-western Australia and associated declines in coral cover. Mar Freshw Res 72(5):620–632

    Article  Google Scholar 

  • Baird A, Marshall P (2002) Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol Prog Ser 237:133–141

    Article  Google Scholar 

  • Barnes BB, Hu C, Schaeffer BA, Lee Z, Palandro DA, Lehrter JC (2013) MODIS-derived spatiotemporal water clarity patterns in optically shallow Florida Keys waters: A new approach to remove bottom contamination. Remote Sens Environ 134:377–391

    Article  Google Scholar 

  • Baumann J, Grottoli AG, Hughes AD, Matsui Y (2014) Photoautotrophic and heterotrophic carbon in bleached and non-bleached coral lipid acquisition and storage. J Exp Mar Biol Ecol 461:469–478

    Article  CAS  Google Scholar 

  • Bessell-Browne P, Stat M, Thomson D, Clode PL (2014) Coscinaraea marshae corals that have survived prolonged bleaching exhibit signs of increased heterotrophic feeding. Coral Reefs 33(3):795–804

    Article  Google Scholar 

  • Bessell-Browne P, Negri AP, Fisher R, Clode PL, Duckworth A, Jones R (2017a) Impacts of turbidity on corals: The relative importance of light limitation and suspended sediments. Mar Pollut Bull 117(1–2):161–170

    Article  CAS  PubMed  Google Scholar 

  • Bessell-Browne P, Negri AP, Fisher R, Clode PL, Jones R (2017b) Cumulative impacts: Thermally bleached corals have reduced capacity to clear deposited sediment. Sci Rep 7(1):2716

    Article  PubMed  PubMed Central  Google Scholar 

  • Blakeway D, Byers M, Stoddart J, Rossendell J (2013) Coral colonisation of an artificial reef in a turbid nearshore environment, Dampier Harbour. Western Australia Plos One 8(9):e75281

    Article  CAS  PubMed  Google Scholar 

  • Briand MJ, Bonnet X, Guillou G, Letourneur Y (2016) Complex food webs in highly diversified coral reefs: Insights from δ13C and δ15N stable isotopes. Food Webs 8:12–22

    Article  Google Scholar 

  • Brown,B.(1997).Coral bleaching: Causes and consequences. Coral Reefs,16(1),S129-S138.

  • Browne N, Smithers S, Perry C (2010) Geomorphology and community structure of Middle Reef, central Great Barrier Reef, Australia: An inner-shelf turbid zone reef subject to episodic mortality events. Coral Reefs 29(3):683–689

    Article  Google Scholar 

  • Browne NK, Tay JK, Low J, Larson O, Todd PA (2015) Fluctuations in coral health of four common inshore reef corals in response to seasonal and anthropogenic changes in water quality. Mar Environ Res 105:39–52

    Article  CAS  PubMed  Google Scholar 

  • Browne N, Braoun C, McIlwain J, Nagarajan R, Zinke J (2019) Borneo coral reefs subject to high sediment loads show evidence of resilience to various environmental stressors. PeerJ 7:e7382

    Article  PubMed  PubMed Central  Google Scholar 

  • Chamberlain, S., Tupper, B., & Mendelssohn, R. (2019). rerddap: General Purpose Client for’ERDDAP’Servers. R Package Version 0.4, 2.

  • Connolly SR, Lopez-Yglesias M, Anthony KR (2012) Food availability promotes rapid recovery from thermal stress in a scleractinian coral. Coral Reefs 31(4):951–960

    Article  Google Scholar 

  • Conti-Jerpe, I. E., Thompson, P. D., Wong, C. W. M., Oliveira, N. L., Duprey, N. N., Moynihan, M. A., & Baker, D. M. (2020). Trophic strategy and bleaching resistance in reef-building corals. Science Advances, 6(15), eaaz5443.

  • Curran J, Curran MJM (2021) Package ‘Hotelling.’ R Package 1:8

    Google Scholar 

  • Darling ES, Alvarez-Filip L, Oliver TA, McClanahan TR, Côté IM (2012) Evaluating life-history strategies of reef corals from species traits. Ecol Lett 15(12):1378–1386

    Article  PubMed  Google Scholar 

  • Eddy TD, Lam VW, Reygondeau G, Cisneros-Montemayor AM, Greer K, Palomares MLD, Bruno JF, Ota Y, Cheung WW (2021) Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4(9):1278–1285

  • Einbinder S, Mass T, Brokovich E, Dubinsky Z, Erez J, Tchernov D (2009) Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar Ecol Prog Ser 381:167–174

    Article  Google Scholar 

  • Evans RD, Wilson SK, Fisher R, Ryan NM, Babcock R, Blakeway D, Bond T, Dorji P, Dufois F, Fearns P (2020) Early recovery dynamics of turbid coral reefs after recurring bleaching events. J Environ Manage 268:110666

    Article  PubMed  Google Scholar 

  • Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar Pollut Bull 50(2):125–146

    Article  CAS  PubMed  Google Scholar 

  • Fisher R, Bessell-Browne P, Jones R (2019) Synergistic and antagonistic impacts of suspended sediments and thermal stress on corals. Nat Commun 10(1):1–9

    Article  CAS  Google Scholar 

  • Fox MD, Williams GJ, Johnson MD, Radice VZ, Zgliczynski BJ, Kelly EL, Rohwer FL, Sandin SA, Smith JE (2018) Gradients in primary production predict trophic strategies of mixotrophic corals across spatial scales. Curr Biol 28(21):3355–3363

    Article  CAS  PubMed  Google Scholar 

  • Fox MD, Elliott Smith EA, Smith JE, Newsome SD (2019) Trophic plasticity in a common reef-building coral: Insights from δ13C analysis of essential amino acids. Funct Ecol 33(11):2203–2214

    Article  Google Scholar 

  • Freeman LA, Kleypas JA, Miller AJ (2013) Coral reef habitat response to climate change scenarios. PLoS ONE 8(12):e82404

    Article  PubMed  PubMed Central  Google Scholar 

  • Freitas LM, Marília de Dirceu MO, Leão ZM, Kikuchi RKP (2019) Effects of turbidity and depth on the bioconstruction of the Abrolhos reefs. Coral Reefs 38(2):241–253

    Article  Google Scholar 

  • Genin A, Monismith SG, Reidenbach MA, Yahel G, Koseff JR (2009) Intense benthic grazing of phytoplankton in a coral reef. Limnol Oceanogr 54(3):938–951

    Article  Google Scholar 

  • Gilmour JP (2004) Size-structures of populations of the mushroom coral Fungia fungites: The role of disturbance. Coral Reefs 23(4):493–504

    Google Scholar 

  • Gilmour, J., Cooper, T., Fabricius, K., & Smith, L. (2006). Early warning indicators of change in the condition of corals and coral communities in response to key anthropogenic stressors in the Pilbara, Western Australia. Australian Institute of Marine Science Report to the Environmental Protection Authority. 101pp.

  • Goldberg WM (2018) Coral Food, Feeding, Nutrition, and Secretion: A Review. In: Kloc M, Kubiak JZ (eds) Marine organisms as model systems in biology and medicine. Springer International Publishing, pp 377–421

    Chapter  Google Scholar 

  • Goodkin NF, Switzer AD, McCorry D, DeVantier L, True JD, Hughen KA, Angeline N, Yang TT (2011) Coral communities of Hong Kong: Long-lived corals in a marginal reef environment. Mar Ecol Prog Ser 426:185–196

    Article  Google Scholar 

  • Griffith JK (1998) Scleractinian corals collected during 1998 from the Dampier Archipelago, Western Australia. Report of the Results of the Western Australian Museum/woodside Energy Ltd Partnership to Explore the Marine Biodiversity of the Dampier Archipelago Western Australia 2002:101–120

    Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440(7088):1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K (2007) Coral reefs under rapid climate change and ocean acidification. Science 318(5857):1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Houlbreque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84(1):1–17

    Article  PubMed  Google Scholar 

  • Huang T-Y, Zhao B (2020) Tidyfst: Tidy verbs for fast data manipulation. Journal of Open Source Software 5(52):2388

    Article  Google Scholar 

  • Hughes AD, Grottoli AG (2013) Heterotrophic Compensation: A possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress? PLoS ONE 8(11):e81172

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359(6371):80–83

    Article  CAS  PubMed  Google Scholar 

  • Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80(3):595–602

    Article  PubMed  Google Scholar 

  • Jones R, Bessell-Browne P, Fisher R, Klonowski W, Slivkoff M (2016) Assessing the impacts of sediments from dredging on corals. Mar Pollut Bull 102(1):9–29

    Article  CAS  PubMed  Google Scholar 

  • Kassambara, A., & Kassambara, M. A. (2020). Package ‘ggpubr.’ R Package Version 0.1, 6.

  • Kleypas JA, McManus JW, Menez LA (1999) Environmental limits to coral reef development: Where do we draw the line? Am Zool 39(1):146–159

    Article  Google Scholar 

  • Lafratta A, Fromont J, Speare P, Schönberg CHL (2017) Coral bleaching in turbid waters of north-western Australia. Mar Freshw Res 68(1):65–75

    Article  Google Scholar 

  • Layman CA, Arrington DA, Montaña CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88(1):42–48

    Article  PubMed  Google Scholar 

  • Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: Light, food, and genetics. Ecology 91(4):990–1003

    Article  PubMed  Google Scholar 

  • Levas S, Grottoli AG, Schoepf V, Aschaffenburg M, Baumann J, Bauer JE, Warner ME (2016) Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals? Coral Reefs 35(2):495–506

    Article  Google Scholar 

  • Maier C, Weinbauer MG, Pätzold J (2010) Stable isotopes reveal limitations in C and N assimilation in the Caribbean reef corals Madracis auretenra, M. carmabi and M. formosa. Mar Ecol Prog Ser 412:103–112

    Article  CAS  Google Scholar 

  • McLachlan RH, Price JT, Muñoz-Garcia A, Weisleder NL, Levas SJ, Jury CP, Toonen RJ, Grottoli AG (2022) Physiological acclimatization in Hawaiian corals following a 22-month shift in baseline seawater temperature and pH. Sci Rep 12(1):3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McSwain, D. (2021). Trophic Plasticity in scleractinian corals: A meta-analysis using innovative text analytic tools. (Doctoral dissertation, University of Hawai'i at Hilo). ProQuest Dissertations Publishing.

  • Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29(2):215–233

    Article  Google Scholar 

  • Morgan KM, Perry CT, Smithers SG, Johnson JA, Daniell JJ (2016) Evidence of extensive reef development and high coral cover in nearshore environments: Implications for understanding coral adaptation in turbid settings. Sci Rep 6(1):1–10

    Article  Google Scholar 

  • Morgan KM, Perry CT, Johnson JA, Smithers SG (2017) Nearshore turbid-zone corals exhibit high bleaching tolerance on the Great Barrier Reef following the 2016 ocean warming event. Front Mar Sci 4:224

    Article  Google Scholar 

  • Moustaka, M., Mohring, M., Holmes, T., Evans, R., Thomson, D., Nutt, C., Stoddart, J., et al. (2019). Cross-shelf Heterogeneity of Coral Assemblages in Northwest Australia. Diversity11(2), 15. MDPI AG.

  • Muscatine L, Porter JW (1977) Reef Corals: Mutualistic Symbioses Adapted to Nutrient-Poor Environments. Bioscience 27(7):454–460

    Article  Google Scholar 

  • Muscatine L, Porter JW, Kaplan IR (1989) Resource partitioning by reef corals as determined from stable isotope composition. Mar Biol 100(2):185–193

    Article  Google Scholar 

  • Nahon S, Richoux NB, Kolasinski J, Desmalades M, Ferrier Pages C, Lecellier G, Planes S, Berteaux Lecellier V (2013) Spatial and Temporal Variations in Stable Carbon (δ13C) and Nitrogen (δ15N) Isotopic Composition of Symbiotic Scleractinian Corals. PLoS ONE 8(12):e81247

    Article  PubMed  PubMed Central  Google Scholar 

  • Neukermans G, Ruddick K, Loisel H, Roose P (2012) Optimization and quality control of suspended particulate matter concentration measurement using turbidity measurements. Limnol Oceanogr Methods 10(12):1011–1023

    Article  Google Scholar 

  • Newsome SD, Martinez del Rio C, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Front Ecol Environ 5(8):429–436

    Article  Google Scholar 

  • Ooms, J. (2019). magick: Advanced Graphics and Image-Processing in R (version 2.2.) [Computer software]. https://cran.r-project.org/package=magick.

  • Osborne S, Bancroft K, D’Adamo N, Monks L (2000) Dampier Archipelago/Cape Preston Regional Perspective 2000. Marine Conservation Branch, Department of Conservation and Land Management, Unpublished Report, p 74

    Google Scholar 

  • Padilla-Gamiño JL, Hanson KM, Stat M, Gates RD (2012) Phenotypic plasticity of the coral Porites rus: Acclimatization responses to a turbid environment. J Exp Mar Biol Ecol 434–435:71–80

    Article  Google Scholar 

  • Palardy JE, Grottoli AG, Matthews KA (2005) Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Mar Ecol Prog Ser 300:79–89

    Article  Google Scholar 

  • Palmer S, Perry C, Smithers S, Gulliver P (2010) Internal structure and accretionary history of a nearshore, turbid-zone coral reef: Paluma Shoals, central Great Barrier Reef. Australia Marine Geology 276(1–4):14–29

    Article  Google Scholar 

  • Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Science 344(6186):895–898

    Article  CAS  PubMed  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McCleachan L, Newman MJ, Paredes G (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301(5635):955–958

    Article  CAS  PubMed  Google Scholar 

  • Pante E, Simon-Bouhet B (2013) marmap: A package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8(9):e73051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce, A., Buchan, S., Chiffings, T., D’Adamo, N., Fandry, C., Fearns, P., Mills, D., Phillips, R., & Simpson, C. (2003). A review of the oceanography of the Dampier Archipelago, Western Australia. The Marine Flora and Fauna of Dampier, Western Australia. Western Australian Museum, Perth, 13–50.

  • Pebesma EJ (2018) Simple features for R: standardized support for spatial vector data. The R Journal 10(1):439

    Article  Google Scholar 

  • Perry CT, Smithers SG (2006) Taphonomic signatures of turbid-zone reef development: Examples from Paluma Shoals and Lugger Shoal, inshore central Great Barrier Reef, Australia. Palaeogeogr Palaeoclimatol Palaeoecol 242(1–2):1–20

    Article  Google Scholar 

  • Perry CT, Smithers SG, Gulliver P, Browne NK (2012) Evidence of very rapid reef accretion and reef growth under high turbidity and terrigenous sedimentation. Geology 40(8):719–722

    Article  Google Scholar 

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Team, R. C (2007) Linear and nonlinear mixed effects models. R Package Version 3(57):1–89

    Google Scholar 

  • Pohlert T (2014) The pairwise multiple comparison of mean ranks package (PMCMR). R Package 27(2019):9

    Google Scholar 

  • Price JT, McLachlan RH, Jury CP, Toonen RJ, Grottoli AG (2021) Isotopic approaches to estimating the contribution of heterotrophic sources to Hawaiian corals. Limnol Oceanogr 66(6):2393–2407

    Article  CAS  Google Scholar 

  • R Core Team. (2021). A Language and Environment for Statistical Computing (R version 4.1.0) [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/

  • Reynaud S, Ferrier-Pages C, Sambrotto R, Juillet-Leclerc A, Jaubert J, Gattuso J-P (2002) Effect of feeding on the carbon and oxygen isotopic composition in the tissues and skeleton of the zooxanthellate coral Stylophora pistillata. Mar Ecol Prog Ser 238:81–89

    Article  Google Scholar 

  • Reynaud S, Martinez P, Houlbrèque F, Billy I, Allemand D, Ferrier-Pagès C (2009) Effect of light and feeding on the nitrogen isotopic composition of a zooxanthellate coral: Role of nitrogen recycling. Mar Ecol Prog Ser 392:103–110

    Article  CAS  Google Scholar 

  • Ricardo GF, Jones RJ, Clode PL, Humanes A, Negri AP (2015) Suspended sediments limit coral sperm availability. Sci Rep 5(1):1–12

    Article  Google Scholar 

  • Ricardo GF, Jones RJ, Negri AP, Stocker R (2016) That sinking feeling: Suspended sediments can prevent the ascent of coral egg bundles. Sci Rep 6(1):1–7

    Article  Google Scholar 

  • Ridgway T, Inostroza K, Synnot L, Trapon M, Twomey L, Westera M (2016) Temporal patterns of coral cover in the offshore Pilbara. Western Australia Marine Biology 163(9):1–9

    Google Scholar 

  • Rodolfo-Metalpa R, Houlbrèque F, Tambutté É, Boisson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso J-P (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Chang 1(6):308–312

    Article  CAS  Google Scholar 

  • Rosenberg Y, Simon-Blecher N, Lalzar M, Yam R, Shemesh A, Alon S, Perna G, Cárdenas A, Voolstra CR, Miller DJ, Levy O (2022) Urbanization comprehensively impairs biological rhythms in coral holobionts. Glob Change Biol 28:3349–3364

    Article  CAS  Google Scholar 

  • Sebens KP, Witting J, Helmuth B (1997) Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelotti). J Exp Mar Biol Ecol 211(1):1–28

    Article  Google Scholar 

  • Seemann J (2013) The use of 13C and 15N isotope labeling techniques to assess heterotrophy of corals. J Exp Mar Biol Ecol 442:88–95

    Article  CAS  Google Scholar 

  • Simpson, C. (1988). Ecology of Scleractinian corals in the Dampier Archipelago. Western Australia Technical Series. Environmental Protection Authority, Perth.

  • Skinner C, Cobain MRD, Zhu Y, Wyatt ASJ, Polunin NVC (2022) Progress and direction in the use of stable isotopes to understand complex coral reef ecosystems: A review. Oceanogr Mar Biol Annu Rev 60:373–432

    Google Scholar 

  • Smithers S, Larcombe P (2003) Late Holocene initiation and growth of a nearshore turbid-zone coral reef: Paluma Shoals, central Great Barrier Reef. Australia Coral Reefs 22(4):499–505

    Article  Google Scholar 

  • Sorokin YI (1973) On the feeding of some scleractinian corals with bacteria and dissolved organic matter. Limnol Oceanogr 18(3):380–386

    Article  CAS  Google Scholar 

  • Sorokin YI, Sorokin PY (2010) Plankton of the central Great Barrier Reef: Abundance, production and trophodynamic roles. J Mar Biol Assoc UK 90(6):1173

    Article  Google Scholar 

  • Spalding MD, Brown BE (2015) Warm-water coral reefs and climate change. Science 350(6262):769–771

    Article  CAS  PubMed  Google Scholar 

  • Strahl J, Rocker MM, Fabricius KE (2019) Contrasting responses of the coral Acropora tenuis to moderate and strong light limitation in coastal waters. Mar Environ Res 147:80–89

    Article  CAS  PubMed  Google Scholar 

  • Sturaro N, Hsieh YE, Chen Q, Wang PL, Denis V (2020) Toward a standardised protocol for the stable isotope analysis of scleractinian corals. Rapid Commun Mass Spectrom 34(8):e8663

    Article  CAS  PubMed  Google Scholar 

  • Sturaro N, Hsieh YE, Chen Q, Wang P, Denis V (2021) Trophic plasticity of mixotrophic corals under contrasting environments. Funct Ecol 35(12):2841–2855

    Article  CAS  Google Scholar 

  • Tanaka Y, Grottoli AG, Matsui Y, Suzuki A, Sakai K (2015) Partitioning of nitrogen sources to algal endosymbionts of corals with long-term 15N-labelling and a mixing model. Ecol Model 309:163–169

    Article  Google Scholar 

  • Tanaka Y, Suzuki A, Sakai K (2018) The stoichiometry of coral-dinoflagellate symbiosis: Carbon and nitrogen cycles are balanced in the recycling and double translocation system. ISME J 12(3):860–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teece MA, Estes B, Gelsleichter E, Lirman D (2011) Heterotrophic and autotrophic assimilation of fatty acids by two scleractinian corals, Montastraea faveolata and Porites astreoides. Limnol Oceanogr 56(4):1285–1296

    Article  CAS  Google Scholar 

  • Thibault, M., Lorrain, A., & Houlbrèque, F. (2021). Comment on Trophic strategy and bleaching resistance in reef-building corals. Science Advances, 7(23), eabd9453.

  • Thomson RE, Emery WJ (2014) Data analysis methods in physical oceanography. Newnes

    Google Scholar 

  • Torréton J-P, Rochelle-Newall E, Pringault O, Jacquet S, Faure V, Briand E (2010) Variability of primary and bacterial production in a coral reef lagoon (New Caledonia). Mar Pollut Bull 61(7–12):335–348

    Article  PubMed  Google Scholar 

  • Tremblay P, Maguer JF, Grover R, Ferrier-Pagès C (2015) Trophic dynamics of scleractinian corals: Stable isotope evidence. J Exp Biol 218(8):1223

    PubMed  Google Scholar 

  • Wang L, Shantz AA, Payet JP, Sharpton TJ, Foster A, Burkepile DE, Vega Thurber R (2018) Corals and their microbiomes are differentially affected by exposure to elevated nutrients and a natural thermal anomaly. Front Mar Sci 5:101

    Article  CAS  Google Scholar 

  • Wickham H (2011) Ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics 3(2):180–185

    Article  Google Scholar 

  • Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J (2019) Welcome to the Tidyverse. Journal of Open Source Software 4(43):1686

    Article  Google Scholar 

  • Wiedenmann J, D’Angelo C, Smith EG, Hunt AN, Legiret FE, Postle AD, Achterberg EP (2013) Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat Clim Chang 3(2):160–164

    Article  CAS  Google Scholar 

  • Wilson S, Kendrick A, Wilson B (2019) The North-Western Margin of Australia. In: World seas: an environmental evaluation (pp 303–331). Academic Press

  • Wilkinson, C. (2000). Status of coral reefs of the world: 2000. Australian Institute of Marine Science.

  • Wolanski E, Pickard GL (2018) Physical oceanographic processes of the Great Barrier Reef. CRC Press

    Book  Google Scholar 

  • Wolanski E, Fabricius K, Spagnol S, Brinkman R (2005) Fine sediment budget on an inner-shelf coral-fringed island, Great Barrier Reef of Australia. Estuar Coast Shelf Sci 65(1–2):153–158

    Article  Google Scholar 

  • Woodhead AJ, Hicks CC, Norström AV, Williams GJ, Graham NA (2019) Coral reef ecosystem services in the Anthropocene. Funct Ecol 33(6):1023–1034

    Article  Google Scholar 

  • Wyatt AS, Lowe RJ, Humphries S, Waite AM (2013) Particulate nutrient fluxes over a fringing coral reef: Source-sink dynamics inferred from carbon to nitrogen ratios and stable isotopes. Limnol Oceanogr 58(1):409–427

    Article  CAS  Google Scholar 

  • Zhao J, Barnes B, Melo N, English D, Lapointe B, Muller-Karger F, Schaeffer B, Hu C (2013) Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters. Remote Sens Environ 131:38–50

    Article  Google Scholar 

  • Zviifler A, O’Leary M, Morgan K, Browne NK (2021) Turbid Coral Reefs: Past, Present and Future—A Review. Diversity, 13(6).

Download references

Acknowledgements

We recognise and acknowledge the Murujuga People, the traditional custodians of the land and sea country on which this study was conducted. The authors recognise and thank those who have contributed to the research and preparation of this manuscript, Tahlia Bassett (Curtin University) for her assistance in the field, Adi Zvifler (University of Western Australia) for her training in coral stable isotope preparation methodologies, Janine Bruemmer (Edith Cowen University) for conducting the Isotope Ratio Mass Spectrometer analysis, Zoe Richards (Curtin University) and Emily Howells (Southern Cross University) for assisting in the initial coral identifications and James Price (Ohio State University), for his guidance regarding the SIBER analysis.

Funding

This project was funded by the Woodside-operated Pluto Project for the State Environmental Offsets Program administered by DBCA. The funders had no role in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

NT contributed to data collection, statistical analysis, graphics and interpretation, and wrote the manuscript. RE, SKW, and MM conceived the initial project idea, experimental design, and contributed to data collection. DT contributed to methodological design and laboratory processing. MC contributed to data collection and collation. All authors contributed to manuscript revisions.

Corresponding author

Correspondence to Natalie Travaglione.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 170 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Travaglione, N., Evans, R., Moustaka, M. et al. Scleractinian corals rely on heterotrophy in highly turbid environments. Coral Reefs 42, 997–1010 (2023). https://doi.org/10.1007/s00338-023-02407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-023-02407-2

Keywords

Navigation