Skip to main content

Advertisement

Log in

Coscinaraea marshae corals that have survived prolonged bleaching exhibit signs of increased heterotrophic feeding

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Colonies of Coscinaraea marshae corals from Rottnest Island, Western Australia have survived for more than 11 months in various bleached states following a severe heating event in the austral summer of 2011. These colonies are situated in a high-latitude, mesophotic environment, which has made their long-term survival of particular interest as such environments typically suffer from minimal thermal pressures. We have investigated corals that remain unbleached, moderately bleached, or severely bleached to better understand potential survival mechanisms utilised in response to thermal stress. Specifically, Symbiodinium (algal symbiont) density and genotype, chlorophyll-a concentrations, and δ13C and δ15N levels were compared between colonies in the three bleaching categories. Severely bleached colonies housed significantly fewer Symbiodinium cells (p < 0.05) and significantly reduced chlorophyll-a concentrations (p < 0.05), compared with unbleached colonies. Novel Symbiodinium clade associations were observed for this coral in both severely and moderately bleached colonies, with clade C and a mixed clade population detected. In unbleached colonies, only clade B was observed. Levels of δ15N indicate that severely bleached colonies are utilising heterotrophic feeding mechanisms to aid survival whilst bleached. Collectively, these results suggest that these C. marshae colonies can survive with low symbiont and chlorophyll densities, in response to prolonged thermal stress and extended bleaching, and increase heterotrophic feeding levels sufficiently to meet energy demands, thus enabling some colonies to survive and recover over long time frames. This is significant as it suggests that corals in mesophotic and high-latitude environments may possess considerable plasticity and an ability to tolerate and adapt to large environmental fluctuations, thereby improving their chances of survival as climate change impacts coral ecosystems worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alamaru A, Loya Y, Brokovich E, Yam R, Shemesh A (2009) Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: insights from stable isotope analysis of total organic material and lipids. Geochim Cosmochim Acta 73:5333–5342

    Article  CAS  Google Scholar 

  • Anthony KRN, Connolly SR, Hoegh-Guldberg O (2007) Bleaching, energetics, and coral mortality risk: effects of temperature, light, and sediment regime. Limnol Oceanogr 52:716–726

    Article  Google Scholar 

  • Baird AH, Marshall PA (1998) Mass bleaching of corals on the Great Barrier Reef. Coral Reefs 17:376

    Article  Google Scholar 

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 430:741

    Article  CAS  PubMed  Google Scholar 

  • Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755

    Article  CAS  PubMed  Google Scholar 

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond B Biol Sci 273:2305–2312

    Article  Google Scholar 

  • Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Cantin NE, van Oppen MJH, Willis BL, Mieog JC, Negri AP (2009) Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28:405–414

    Article  Google Scholar 

  • Connolly SR, Lopez-Yglesias MA, Anthony KRN (2012) Food availability promotes rapid recovery from thermal stress in a scleractinian coral. Coral Reefs 31:951–960

    Article  Google Scholar 

  • Cooper TF, Ulstrup KE, Dandan SS, Heyward AJ, Kühl M, Muirhead A, O’Leary RA, Ziersen BF, Van Oppen MJ (2011) Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proc R Soc Lond B Biol Sci 278:1840–1850

    Article  Google Scholar 

  • Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011) Geneious v6.1.6, Available from http://www.geneious.com

  • Dubinsky Z, Jokiel PL (1994) Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac Sci 48:313–324

    Google Scholar 

  • Fabricius KE, Mieog JC, Colin PL, Idip D, van Oppen MJH (2004) Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 13:2445–2458

    Article  CAS  PubMed  Google Scholar 

  • Finney JC, Pettay DT, Sampayo EM, Warner ME, Oxenford HA, LaJeunesse TC (2010) The relative significance of host–habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microb Ecol 60:250–263

    Article  PubMed  Google Scholar 

  • Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanog 45:677–685

    Article  CAS  Google Scholar 

  • Gleason MG (1993) Effects of disturbance on coral communities: bleaching in Moorea, French Polynesia. Coral Reefs 12:193–201

    Article  Google Scholar 

  • Gleason DF, Wellington GM (1993) Ultraviolet radiation and coral bleaching. Nature 365:836–838

    Article  Google Scholar 

  • Glynn PW (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17

    Article  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol 2:495–509

    Article  Google Scholar 

  • Glynn PW, Mate JL, Baker AC, Calderon MO (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Nino-Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982–1983 event. Bull Mar Sci 69:79–109

    Google Scholar 

  • Grottoli AG (1999) Variability of stable isotopes and maximum linear extension in reef-coral skeletons at Kaneohe Bay, Hawaii. Mar Biol 135:437–449

    Article  Google Scholar 

  • Grottoli AG (2002) Effect of light and brine shrimp on skeletal δ13C in the Hawaiian coral Porites compressa: a tank experiment. Geochim Cosmochim Acta 66:1955–1967

    Article  CAS  Google Scholar 

  • Grottoli AG, Wellington GM (1999) Effect of light and zooplankton on skeletal δ13C values in the eastern Pacific corals Pavona clavus and Pavona gigantea. Coral Reefs 18:29–41

    Article  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Juarez C (2004) Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar Biol 145:621–631

    Article  CAS  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O (1994) Population dynamics of symbiotic zooxanthellae in the coral Pocillopora damicornis exposed to elevated ammonium [(NH4)2 SO4] concentrations. Pac Sci 48:263–272

    CAS  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Houlbreque F, Ferrier-Pages C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev Camb Philos Soc 84:1–17

    Article  PubMed  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    CAS  Google Scholar 

  • Jones RJ (1997) Changes in zooxanthellar densities and chlorophyll concentrations in corals during and after a bleaching event. Mar Ecol Prog Ser 158:51–59

    Article  Google Scholar 

  • LaJeunesse TC (2005) ‘Species’ radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Reimer JD (2012) A genetics-based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (Dinophyceae), two dinoflagellates symbiotic with cnidaria. J Phycol 48:1380–1391

    Article  Google Scholar 

  • LaJeunesse TC, Finney JC, Smith RT, Oxenford H (2009) Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proc R Soc Biol Sci Ser B 276:4139–4148

    Article  Google Scholar 

  • LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO, Hoegh-Guldberg O, Fitt WK (2010a) Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endoysmbionts in the genus Symbiodinium. J Biogeogr 37:785–800

    Article  Google Scholar 

  • LaJeunesse TC, Smith R, Walther M, Pinzón J, Pettay DT, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magana AL, Lopez Perez A, Reyes-Bonilla H, Warner ME (2010b) Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to environmental disturbance. Proc R Soc Biol Sci Ser B 277:2925–2934

    Article  Google Scholar 

  • Land LS, Lang JC, Smith BN (1975) Preliminary observations on the carbon isotopic composition of some reef coral tissues and symbiotic zooxanthellae. Limnol Oceanogr 20:283–287

    Article  CAS  Google Scholar 

  • Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 9:990–1003

    Article  Google Scholar 

  • Liu G, Strong AE, Skirving WJ, Arzayus LF (2006) Overview of NOAA Coral Reef Watch Program’s near-real time global satellite coral bleaching monitoring activities. Proc 10th Int Coral Reef Symp 1:1783–1793

  • Marhaver KL (2011) Bleaching corals of two species appear to feed from neighbouring algal turfs. Coral Reefs 30:651

    Article  Google Scholar 

  • Marsh JA (1970) Primary productivity of reef-building calcareous red algae. Ecology 51:255–263

    Article  Google Scholar 

  • Marshall PA, Baird AH (2000) Bleaching of corals in the Central Great Barrier Reef: variation in assemblage response and taxa susceptibilities. Coral Reefs 19:155–163

    Article  Google Scholar 

  • McConnaughey T (1989) δ13C and δ18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim Cosmochim Acta 53:151–162

    Article  CAS  Google Scholar 

  • McConnaughey TA, Burdett J, Whelan JF, Paul CK (1997) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochim Cosmochim Acta 61:611–622

    Article  CAS  Google Scholar 

  • Merks RM, Hoekstra AG, Kaandorp JA, Sloot P (2004) Polyp oriented modelling of coral growth. J Theor Biol 228:559–576

    Article  PubMed  Google Scholar 

  • Moore JAY, Bellchambers LM, Depczynski MR, Evans RD, Evans SN, Field SN, Friedman KJ, Gilmour JP, Holmes TH, Middlebrook R, Radford BT, Ridgway T, Shedrawi G, Taylor H, Thomson DP, Wilson SK (2012) Unprecedented mass bleaching and loss of coral across 12° of latitude in Western Australia in 2010–11. PLoS ONE 7:e51807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muller-Parker G, McCloskey L, Hoegh-Guldberg O, McAuley P (1994) Effect of ammonium enrichment on animal and algal biomass of the coral Pocillopora damicornis. Pac Sci 48:273–283

    CAS  Google Scholar 

  • Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs 25:75–87

    Google Scholar 

  • Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611

    Article  CAS  Google Scholar 

  • Muscatine LJ, Porter W, Kaplan IR (1989) Resource partitioning by reef corals as determined from stable isotope composition, II. δ15N of Zooxanthellae and animal tissue versus depth. Mar Biol 10:185–193

    Article  Google Scholar 

  • Muscatine L, Goiran C, Land L, Jaubert J, Cuif JP, Allemand D (2005) Stable isotopes (δ13C and δ15 N) of organic matrix from coral skeleton. Proc Natl Acad Sci USA 102:1525–1530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pearce AF, Feng M (2013) The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J Mar Syst 111:139–156

    Article  Google Scholar 

  • Pearse VB, Muscatine L (1971) Role of symbiotic algae (zooxanthellae) in coral calcification. Biol Bull 141:350–363

    Article  CAS  Google Scholar 

  • Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawaii. Mol Phylogenet Evol 56:492–497

    Article  CAS  PubMed  Google Scholar 

  • Porter JW (1974) Zooplankton feeding by the Caribbean reef-building coral Montastrea cavernosa. Proc 2nd Int Coral Reef Symp 1:111–126

  • Porter JW, Fitt WK, Spero HJ, Rogers CS, White MW (1989) Bleaching in reef corals: physiological and stable isotopic responses. Proc Natl Acad Sci USA 86:9342–9346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rowan R (2004) Thermal adaptation in reef coral symbionts. Nature 430:742

    Article  CAS  PubMed  Google Scholar 

  • Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral–algal symbiosis. Proc Natl Acad Sci USA 92:2850–2853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silverstein RN, Correa AM, LaJeunesse TC, Baker AC (2011) Novel algal symbiont (Symbiodinium spp.) diversity in reef corals of Western Australia. Mar Ecol Prog Ser 422:63–75

    Article  Google Scholar 

  • Stat M, Gates RD (2011) Clade D Symbiodinium in scleractinian corals: a nugget of hope, a selfish opportunist, an ominous sign, or all of the above? J Mar Biol. doi:10.1155/2011/730715

  • Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts–symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 8:23–43

    Article  Google Scholar 

  • Stat M, Morris E, Gates RD (2008a) Functional diversity in coral-dinoflagellate symbiosis. Proc Natl Acad Sci USA 105:9256–9261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stat M, Loh WKW, Hoegh-Guldberg O, Carter DA (2008b) Symbiont acquisition strategy drives host–symbiont associations in the southern Great Barrier Reef. Coral Reefs 27:763–772

    Article  Google Scholar 

  • Steinacher M, Joos F, Frölicher TL, Bopp L, Cadule P, Cocco V, Doney SC, Gehlen M, Lindsay K, Moore JK, Schneider B, Segschneider J (2010) Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7:979–1005

    Article  CAS  Google Scholar 

  • Swart PK (1983) Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth Sci Rev 19:51–80

    Article  CAS  Google Scholar 

  • Swart PK, Saied A, Lamb K (2005) Temporal and spatial variation in the δ15N and δ13C of coral tissue and zooxanthellae in Montastraea faveolata collected from the Florida reef tract. Limnol Oceanogr 50:1049–1058

    Article  CAS  Google Scholar 

  • Szmant AM, Gassman NJ (1990) The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8:217–224

    Article  Google Scholar 

  • Thomson D, Bearham D, Graham F, Eagle J (2011) High latitude, deeper water coral bleaching at Rottnest Island, Western Australia. Coral Reefs 30:1107

    Article  Google Scholar 

  • Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722

    Article  Google Scholar 

  • Titlyanov EA (1987) Structural and morphological differences of reef-building branched coral colonies from habitats with different light conditions. Mar Biol (Vladivostok) 1:32–36

    Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastrea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull 201:348–359

    Article  CAS  PubMed  Google Scholar 

  • Trench RK (1979) The cell biology of plant–animal symbiosis. Annu Rev Plant Physiol 30:485–531

    Article  CAS  Google Scholar 

  • Ulstrup KE, van Oppen MJH (2003) Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Mol Ecol 12:3477–3484

    Article  CAS  PubMed  Google Scholar 

  • Veron JEN, Marsh LM (1988) Hermatypic corals of Western Australia: records and annotated species list. Rec West Aust Mus 29:1–136

    Google Scholar 

  • Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, de Bettognies T, Bennett S, Rousseaux CS (2012) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Chang 3:78–82

    Article  Google Scholar 

  • Wijgerde T, Diantari R, Lewaru MW, Verreth JAJ, Osinga R (2011) Extracoelenteric zooplankton feeding is a key mechanism of nutrient acquisition for the scleractinian coral Galaxea fascicularis. J Exp Biol 214:3351–3357

    Article  CAS  PubMed  Google Scholar 

  • Wijgerde T, Schots P, van Onselen E, Janse M, Karruppannan E, Verreth JAJ, Osinga R (2013) Epizoic acoelomorph flatworms impair zooplankton feeding by the scleractinian coral Galaxea fascicularis. Biol Open 2:10–17

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilkinson C (2000) Status of coral reefs of the world: 2000. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Zhang Z, Green BR, Cavalier-Smith T (2000) Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids. J Mol Evol 51:26–40

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the UWA School of Environmental Systems and Engineering Water Quality Lab for lab space and equipment to undertake chlorophyll analyses; Greg Skrzypek and Douglas Ford at the West Australian Biogeochemistry Centre for assistance with the stable isotope work; and the AMMRF facility at CMCA for microscopy access. This work was partially funded through a postdoctoral fellowship to M.S. from the UWA-AIMS-CSIRO research collaborative agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pia Bessell-Browne.

Additional information

Communicated by Biology Editor Dr. Anastazia Banaszak

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessell-Browne, P., Stat, M., Thomson, D. et al. Coscinaraea marshae corals that have survived prolonged bleaching exhibit signs of increased heterotrophic feeding. Coral Reefs 33, 795–804 (2014). https://doi.org/10.1007/s00338-014-1156-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-014-1156-z

Keywords

Navigation