Skip to main content
Log in

Zoo-FISH with microdissected arm specific paints for HSA2, 5, 6, 16, and 19 refines known homology with pig and horse chromosomes

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Microdissected arm specific paints (ASPs) for human (HSA) chromosomes (Chrs) 2, 5, 6, 16, and 19 were used as probes on pig (SSC) and horse (ECA) metaphase chromosomes. Regions homologous to individual human arms were delineated in the two species studied. Of the ten ASPs used, HSA6 and 16 ASPs showed complete synteny conservation of individual arms as single blocks/arms both in pig and horse. A similar trend was, in general, also observed for HSA19 ASPs. However, contrary to these observations, synteny conservation of individual arms of HSA2 and HSA5 was not observed in pig and horse. The arm specific painting data, coupled with the available gene mapping data, showed that, although HSA2 corresponded to two arms/chromosomes each in pig and horse, the breakpoint of this synteny in humans was not located at the centromere, but at HSA2q13 band. Similarly, arm specific paints for HSA5 showed that of the two blocks/chromosomes painted in pig and horse, one corresponded to HSA5q13-pter, the other to HSA5q13-qter. The findings suggest that 5q13 band may also be an evolutionary break point, similar to the one detected on HSA2q13. The microdissected human arm specific painting probes used in the present work provide more accurate and refined comparative information on pig and horse chromosomes than that available through the use of human whole chromosome specific paints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold N, Stanyon R, Jauch A, O’Brien P, Wienberg J (1996) Identification of complex chromosome rearrangements in the gibbon by fluorescent in situ hybridization (FISH) of a human chromosome 2q specific microlibrary, yeast artificial chromosomes, and reciprocal chromosome painting. Cytogenet Cell Genet 74, 80–85

    Article  PubMed  CAS  Google Scholar 

  • Avarello R, Pedicini A, Caiulo A, Zuffardi O, Fraccaro M (1992) Evidence for an ancestral alphoid domain on the long arm of human chromosome 2. Hum Genet 89, 247–249

    Article  PubMed  CAS  Google Scholar 

  • BovMap: http://locus.jouy.inra.fr/cgi-bin/bovmap/intro.pl

  • Bruch J, Rettenberger G, Leeb T, Meier-Ewert S, Klett C, Brenig B, Hameister H (1996) Mapping of type I loci from human chromosome 7 reveals segments of conserved synteny on pig chromosomes 3, 9, and 18. Cytogenet Cell Genet 73, 164–167

    Article  PubMed  CAS  Google Scholar 

  • Chowdhary BP (1997) Cytogenetics and physical gene mapping. In Genetics of Pig M Rothschild, A Ruvinsky, eds.—: CAB International, pp xx–xx

  • Chowdhary BP, Ellegren H, Johansson M, Andersson L, Gustavasson I (1994) In situ hybridization mapping of the growth hormone receptor (GHR) gene assigns a linkage group (C9, FSA, GHR, and S0105) to Chromosome 16 in pigs. Mamm Genome 5, 160–162

    Article  PubMed  CAS  Google Scholar 

  • Chowdhary BP, Frönicke L, Gustavsson I, Scherthan H (1996) Comparative analysis of the cattle and human genomes: detection of ZOO-FISH and gene mapping-based chromosomal homologies. Mamm Genome 7, 297–302

    Article  PubMed  CAS  Google Scholar 

  • Frönicke L, Scherthan H (1997) Zoo-FISH analysis of human and Indian muntjac karyotypes (Muntiaws muntjak vaginalis) reveals satellite-DNA clusters at the margins of conserved syntenic segments. Chromosome Res. 5, 254–261

    Article  PubMed  Google Scholar 

  • Frönicke L, Chowdhary BP, Scherthan H, Gustavsson I (1996) A comparative map of the porcine and human genomes demonstrates ZOO-FISH and gene mapping-based chromosomal homologies. Mamm Genome 7, 285–290

    Article  PubMed  Google Scholar 

  • Frönicke L, Müller-Navia J, Romanakis K, Scherthan H (1997) Zoo-FISH maps of the harbor seal (Phoca vitulina) and the putative ancestral carnivore karyotype. Chromosoma 106, 108–113

    Article  PubMed  Google Scholar 

  • GDB: http://www.hgmp.mrc.ac.uk/gdb7gdbtop.html

  • Goureau A, Yerle M, Schmitz A, Riquet J, Milan D, Pinton P, Frelat G, Gellin J (1996) Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 36, 252–262

    Article  PubMed  CAS  Google Scholar 

  • Guan XY, Meltzer PS, Cao J, Trent JM (1992) Rapid generation of region-specific genomic clones by chromosome microdissection: isolation of DNA from a region frequently deleted in malignant melanoma. Genomics 14, 680–684

    Article  PubMed  CAS  Google Scholar 

  • Guan XY, Trent JM, Meltzer PS (1993) Generation of band-specific painting probes from a single microdissected chromosome. Hum Mol Genet 2, 1117–1121

    Article  PubMed  CAS  Google Scholar 

  • Guan XY, Meltzer PS, Trent JM (1994) Rapid generation of whole chromosome painting probes (WCPs) by chromosome microdissection. Genomics 22, 101–107

    Article  PubMed  CAS  Google Scholar 

  • Hameister H, Klett Ch, Bruch J, Dixkens Ch, Vogel W, Christensen K (1997) Zoo-FISH analysis: the American mink (Mustela vison) closely resembles the cat karyotype. Chromosome Res 5, 5–11

    Article  PubMed  CAS  Google Scholar 

  • Hayes H (1995) Chromosome painting with human chromosome-specific DNA libraries reveals the extent and distribution of conserved segments in bovine chromosomes. Cytogenet Cell Genet 71, 168–174

    Article  PubMed  CAS  Google Scholar 

  • Ijdo JW, Baldini A, Wells RA, Ward DC, Reeders ST (1992) FRA2B is distinct from inverted telomere repeat arrays at 2q13. Genomics 12, 833–835

    Article  PubMed  CAS  Google Scholar 

  • Lyons LA, Raymond MM, O’Brien SJ (1994) Comparative genomics: the next generation. Anim Biotechnol 5, 103–111

    Article  CAS  Google Scholar 

  • Mellink C, Lahbib-Mansais Y, Yerle M, Gellin J (1994) Mapping of the regulatory type I alpha and catalytic beta subunits of cAMP-dependent protein kinase and interleukin 1 alpha and 1 beta in the pig. Mamm Genome 5, 298–302

    Article  PubMed  CAS  Google Scholar 

  • Meltzer PS, Guan XY, Burgess A, Trent J (1992) Rapid generation of region specific probes by chromosome microdissection and their application. Nature Genet 1, 24–28

    Article  PubMed  CAS  Google Scholar 

  • Millon LV, Bowling AT, Bickel LA (1993) Fluorescence in situ hybridization of C3 and 18SrDNA to horse chromosomes. Proc. 8th North American Colloq. on Domestic Animal Cytogenetics and Gene Mapping, Guelph, p. 163

  • Müller S, Koehler U, Wienberg J, Marzella R, Finelli P, Antonacci R, Rocchi M, Archidiacono N (1996) Comparative fluorescence in situ hybridization mapping of primate chromosomes with Alu polymerase chain reaction generated probes from human/rodent cell hybrids. Chromosome Res 4, 38–42

    Article  PubMed  Google Scholar 

  • Raudsepp T, Frönicke L, Scherthan H, Gustavsson I, Chowdhary BP (1996). Zoo-FISH delineates conserved chromosomal segments between horse and man. Chromosome Res 4, 218–225

    Article  PubMed  CAS  Google Scholar 

  • Rettenberger G, Klett Ch, Zechner U, Bruch J, Just W, Vogel W, Hameister H (1995a) Zoo-FISH analysis: cat and human karyotypes closely resemble the putative ancestral mammalian karyotype. Chromosome Res 3, 479–486

    Article  PubMed  CAS  Google Scholar 

  • Rettenberger G, Klett C, Zechner U, Kunz J, Vogl W, Hameister H. (1995b) Visualization of the conservation of synteny between humans and pigs by heterologous chromosomal painting. Genomics 26, 372–378

    Article  PubMed  CAS  Google Scholar 

  • Rettenberger G, Abdo G, Stranzinger G (1996) ZOO-FISH analysis in the horse, Equus caballus, detects regions homologous to human chromosomes 3 and 14. J Anim Breed Genet 113, 145–148

    Google Scholar 

  • Scherthan H, Cremer T, Arnason U, Weier H-U, Lima-de-Faria A, Frönicke L (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nature Genet 6, 342–347

    Article  PubMed  CAS  Google Scholar 

  • Solinas-Toldo S, Lengauer C, Fries R (1995) Comparative genome map of human and cattle. Genomics 27, 489–496

    Article  PubMed  CAS  Google Scholar 

  • Telenius H, Pelmear A, Tunnacliffe A, Carter NP, Behmel A, Ferguson-Smith MA, Nordenskjold M, Pfragner R, Ponder B (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4, 257–263

    Article  PubMed  CAS  Google Scholar 

  • Viersbach R, Schwanitz G, Nöthen MM (1994) Delineation of marker chromosomes by reverse chromosome painting using only a small number of DOP-PCR amplified microdissected chromosomes. Hum Genet 93, 663–667

    Article  PubMed  CAS  Google Scholar 

  • Wienberg J, Stanyon R (1995) Chromosome painting in mammals as an approach to comparative genomics. Curr Opin Genet Dev 5, 304–308

    Article  Google Scholar 

  • Wienberg J, Jauch A, Lüdecke H-J, Senger G, Horsthemke B, Claussen U, Cremer T, Arnold N, Lengauer C (1994) The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary. Chromosome Res 2, 405–410

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhary, R., Raudsepp, T., Guan, XY. et al. Zoo-FISH with microdissected arm specific paints for HSA2, 5, 6, 16, and 19 refines known homology with pig and horse chromosomes. Mammalian Genome 9, 44–49 (1998). https://doi.org/10.1007/s003359900677

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003359900677

Keywords

Navigation