Skip to main content
Log in

Interval-specific congenic strains (ISCS): An experimental design for mapping a QTL into a 1-centimorgan interval

  • Original Contribution
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

A general experimental design that allows mapping of a quantitative trait locus (QTL) into a 1-cM interval is presented. The design consists of a series of strains, termed “interval-specific congenic strains (ISCS)”. Each ISCS is recombinant at a specific 1-cM sub-interval out of an ordered set of sub-intervals, which together comprise a wider interval, to which a QTL was previously mapped. It is shown that a specific and previously detected QTL of moderate or even small effect can be accurately mapped into a 1-cM interval in a program involving a total of no more than 1000 individuals. Consequently, ISCS can serve as the ultimate genetic mapping procedure before the application of physical mapping tools for positional cloning of a QTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Breese EL, Mather K (1957) The organization of polygenic activity within a chromosome in Drosophila 1. Hair characters. Heredity 11, 373–395

    Article  Google Scholar 

  • Changjian J, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140, 1111–1127

    Google Scholar 

  • Darvasi A, Soller M (1994) Selective DNA pooling for determination of linkage between a molecular marker and a quantitative locus. Genetics 138, 1365–1373

    PubMed  CAS  Google Scholar 

  • Darvasi A, Soller M (1995) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141, 1199–1207

    PubMed  CAS  Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behavior Genetics (in press)

  • Darvasi A, Weinreb A, Minke V, Weller JI, Soller M (1993) Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134, 943–951

    PubMed  CAS  Google Scholar 

  • Davies RW (1971) The genetic relationship of two quantitative characters in D. melanogaster. II. Location of the effects. Genetics 69, 363–375

    PubMed  CAS  Google Scholar 

  • Demant P, Hart AAM (1986) Recombinant congenic strains—a new tool for analyzing genetic traits determined by more than one gene. Immunogenetics 24, 416–422

    Article  PubMed  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141, 1147–1162

    PubMed  CAS  Google Scholar 

  • Flint J, Corley R, DeFries JC, Fulker DW, Gray JA, Miller S, Collins AC (1995) A simple genetic basis for a complex psychological trait in laboratory mice. Science 269, 1432–1435

    Article  PubMed  CAS  Google Scholar 

  • Frankel WN, Johnson EW, Lutz CM (1995) Congenic strains reveal effects of the epilepsy quantitative trait locus, E12, separate from other El loci. Mamm Genome 6, 839–843

    Article  PubMed  CAS  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative loci in line crosses using flanking markers. Heredity 69, 315–324

    PubMed  CAS  Google Scholar 

  • Hilbert P, Lindpainter K, Beckmann JS, Serikawa T, Soubrier F, Dubay C, Cartwright P, De Gouyon B, Julier C, Takahashi S, Vincent M, Ganten D, Georges M, Lathrop GM (1991) Chromosomal mapping of two genetic loci associated with blood pressure regulation in hereditary hypertensive rats. Nature 353, 521–529

    Article  PubMed  CAS  Google Scholar 

  • Jacob HJ, Lindpainter K, Lincoln SE, Kusumi K, Bunker RK, Mao YP, Ganten D, Dzau VJ, Lander ES (1991) Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67, 213–224

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135,205–211

    PubMed  CAS  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136, 1447–1455

    PubMed  CAS  Google Scholar 

  • Jensen J (1989) Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker loci. Theor Appl Genet 78, 613–618

    Article  Google Scholar 

  • Keightley PD, Bulfield G (1993) Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genet Res 62, 195–203

    Article  PubMed  CAS  Google Scholar 

  • Knapp SJ, Bridges WC (1990) Using molecular markers to estimate quantitative trait locus parameters: power and genetic variances for unreplicated and replicated progeny. Genetics 126, 769–777

    PubMed  CAS  Google Scholar 

  • Korol AB, Ronin YI, Kirzhner VM (1995) Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics 140, 1137–1147

    PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199

    PubMed  CAS  Google Scholar 

  • Morel L, Yu Y, Blenman KR, Caldwell RA, Wakeland EK (1996) Production of congenic mouse strains carrying genomic intervals containing SLE-susceptibility genes derived from the SLE-prone NZM2410 strain. Mamm Genome 7, 335–339

    Article  PubMed  CAS  Google Scholar 

  • Nienhuis J, Helentjaris T, Slocum M, Ruggero B, Schaeffer A (1987). Restriction fragment length polymorphism analysis of loci associated with insect resistance in tomato. Crop Sci 27, 797–803

    Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factor by using a complete linkage map of restriction fragment length polymorphisms. Nature 335, 721–726

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124, 735–742

    PubMed  CAS  Google Scholar 

  • Shrimpton AE, Robertson A (1988a) The isolation of polygenic factors controlling bristle score in Drosophila melanogaster. I. Allocation of third chromosome sternopleural bristle effects to chromosome sections. Genetics 118, 437–443

    PubMed  Google Scholar 

  • Shrimpton AE, Robertson A (1988b) The isolation of factors controlling bristle score in Drosophila melanogaster. II Distribution of third chromosome bristle effects within chromosome sections. Genetics 118, 445–459

    PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backeross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92, 191–203

    Article  Google Scholar 

  • Tanksley SD, Ganal MW, Martin GB (1995) Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet 11, 63–68

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, BeckBunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L-pimpinellifolium. Theor Appl Genet 92, 213–224

    Article  CAS  Google Scholar 

  • Wehrhahn C, Allard RW (1965) The detection and measurement of the effects of individual genes involved in the inheritance of a quantitative character in wheat Genetics 51, 109–119

    PubMed  CAS  Google Scholar 

  • Weller JI (1986) Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics 42, 627–640

    Article  PubMed  CAS  Google Scholar 

  • Weller JI, Soller M, Brody T (1988) Linkage analysis of quantitative traits in an interspecific cross tomato (Lycopersicon esculentum X Lycupersicon pimpinellifolium) by means of genetic markers. Genetics 118, 329–339

    PubMed  Google Scholar 

  • Yui MA, Muralidharan K, Moren-Altamirano B, Perrin G, Chestnut K, Wakeland EK (1996) Production of congenic mouse strains carrying NOD-derived diabetogenic genetic intervals: an approach for the genetic dissection of complex traits. Mamm Genome 7, 331–334

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90, 10972–10976

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136, 1457–1468

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darvasi, A. Interval-specific congenic strains (ISCS): An experimental design for mapping a QTL into a 1-centimorgan interval. Mammalian Genome 8, 163–167 (1997). https://doi.org/10.1007/s003359900382

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003359900382

Keywords

Navigation