Skip to main content
Log in

Central Configurations of the Curved N-Body Problem

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We consider the N-body problem of celestial mechanics in spaces of nonzero constant curvature. Using the concept of effective potential, we define the moment of inertia for systems moving on spheres and hyperbolic spheres and show that we can recover the classical definition in the Euclidean case. After proving some criteria for the existence of relative equilibria, we find a natural way to define the concept of central configuration in curved spaces using the moment of inertia and show that our definition is formally similar to the one that governs the classical problem. We prove that, for any given point masses on spheres and hyperbolic spheres, central configurations always exist. We end with results concerning the number of central configurations that lie on the same geodesic, thus extending the celebrated theorem of Moulton to hyperbolic spheres and pointing out that it has no straightforward generalization to spheres, where the count gets complicated even for two bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abraham, R., Marsden, J.: Foundations of Mechanics, 2nd edn. Addison-Wesley, Boston (1987)

    Google Scholar 

  • Albouy, A., Kaloshin, V.: Finiteness of central configurations of five bodies in the plane. Ann. Math. 176, 535–588 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Alfaro, F., Pérez-Chavela, E.: Families of continua of central configurations in charged problems. Dyn. Cont. Discrete Impuls. Syst. Ser. A Math. Anal. 9, 463–465 (2002)

    MathSciNet  MATH  Google Scholar 

  • Bolyai, W., Bolyai, J.: Geometrische Untersuchungen. Teubner, Leipzig, Berlin (1913)

    MATH  Google Scholar 

  • Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319. Springer, Berlin (1999)

    Google Scholar 

  • de Bernardis, P., et al.: A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature 404(6781), 955–959 (2000)

    Article  Google Scholar 

  • Diacu, F., Sánchez-Cerritos, J.M., Zhu, S.: Stability of fixed points and associated relative equilibria of the 3-body problem on \(S^1\) and \(S^2\). J. Dyn. Differ. Equ. 30(1), 209–225 (2018)

    Article  MATH  Google Scholar 

  • Diacu, F.: Bifurcations of the Lagrangian orbits from the classical to the curved 3-body problem. J. Math. Phys. 112701 (2016). https://doi.org/10.1063/1.4967443

  • Diacu, F.: The classical \(N\)-body problem in the context of curved space. Can. J. Math. (2017). https://doi.org/10.4153/CJM-2016-041-2

  • Diacu, F.: On the singularities of the curved \(N\)-body problem. Trans. Am. Math. Soc. 363(4), 2249–2264 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Diacu, F.: Polygonal homographic orbits of the curved 3-body problem. Trans. Am. Math. Soc. 364, 2783–2802 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Diacu, F.: Relative equilibria of the curved \(N\)-body problem, Atlantis Studies in Dynamical Systems, vol. 1. Atlantis, Amsterdam (2012)

    Book  MATH  Google Scholar 

  • Diacu, F.: Relative equilibria of the 3-dimensional curved \(n\)-body problem. Memoirs Am. Math. Soc. 228, 1071 (2013)

    MathSciNet  Google Scholar 

  • Diacu, F.: The curved \(N\)-body problem: risks and rewards. Math. Intelligencer 35(3), 24–33 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Diacu, F., Kordlou, S.: Rotopulsators of the curved \(N\)-body problem. J. Differ. Equ. 255, 2709–2750 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Diacu, F., Pérez-Chavela, E.: Homographic solutions of the curved \(3\)-body problem. J. Differ. Equ. 250, 340–366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Diacu, F., Popa, S.: All Lagrangian relative equilibria have equal masses. J. Math. Phys. 55, 112701 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Diacu, F., Thorn, B.: Rectangular orbits of the curved 4-body problem. Proc. Am. Math. Soc. 143, 1583–1593 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Diacu, F., Pérez-Chavela, E., Santoprete, M.: Saari’s conjecture for the collinear \(N\)-body problem. Trans. Am. Math. Soc. 357(10), 4215–4223 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Diacu, F., Pérez-Chavela, E., Santoprete, M.: The \(N\)-body problem in spaces of constant curvature. Part I: relative equilibria. J. Nonlinear Sci. 22(2), 247–266 (2012). https://doi.org/10.1007/s00332-011-9116-z

    Article  MathSciNet  MATH  Google Scholar 

  • Diacu, F., Pérez-Chavela, E., Santoprete, M.: The \(N\)-body problem in spaces of constant curvature. Part II: singularities. J. Nonlinear Sci. 22(2), 267–275 (2012). https://doi.org/10.1007/s00332-011-9117-y

    Article  MathSciNet  MATH  Google Scholar 

  • Diacu, F., Pérez-Chavela, E., Guadalupe Reyes Victoria, J.: An intrinsic approach in the curved \(N\)-body problem. The negative curvature case. J. Differ. Equ. 252, 4529–4562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Diacu, F., Martínez, R., Pérez-Chavela, E., Simó, C.: On the stability of tetrahedral relative equilibria in the positively curved 4-body problem. Phys. D 256–7, 21–35 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Dictionary.com Unabridged. http://dictionary.reference.com/browse/moment+of+inertia based on the Random House Dictionary (2015)

  • Dziobek, O.: Über einen merkwürdigen Fall des Vielkörperproblems. Astron. Nachr. 152, 33–46 (1900)

    Article  Google Scholar 

  • Euler, L.: Considerationes de motu corporum coelestium. Novi comm. acad. sci. Petropolitanae 10 (1764), 1766, pp. 544–558 (read at Berlin in April 1762). Also in Opera Omnia, S. 2, vol. 25, pp. 246–257 with corrections and comments by M. Schürer

  • Euler, L.: Theoria motus corporum solidorum seu rigidorum: Ex primis nostrae cognitionis principiis stabilita et ad omnes motus, qui in huiusmodi corpora cadere possunt, accommodata, A.F. Röse, Rostock and Greifswald (1765)

  • García-Naranjo, L.C., Marrero, J.C., Pérez-Chavela, E., Rodríguez-Olmos, M.: Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2 (2016). arXiv:1505.01452

  • Hirsch, M.W.: Differential Topology, Graduate Texts in Mathematics, vol. 33. Springer, New York (1976)

    Google Scholar 

  • Jacobi, C.G.J.: Vorlesungen über Dynamik, in C.G.J. Jacobis Gesammelte Werke, vol. VIII, Druck und Verlag Von G. Reimer, Berlin (1884)

  • Kilin, A.A.: Libration points in spaces \({{\bf S}}^2\) and \({{\bf L}}^2\). Regul. Chaotic Dyn. 4(1), 91–103 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Killing, W.: Die Rechnung in den nichteuklidischen Raumformen. J. Reine Angew. Math. 89, 265–287 (1880)

    MathSciNet  MATH  Google Scholar 

  • Kozlov, V.V., Harin, A.O.: Kepler’s problem in constant curvature spaces. Celestial Mech. Dynam. Astronom 54, 393–399 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Kragh, H.: Is space flat? Nineteenth century astronomy and non-Euclidean geometry. J. Astr. Hist. Heritage 15(3), 149–158 (2012)

    Google Scholar 

  • Lagrange, J.L.: Essai sur le problème des trois corps, 1772, Œuvres tome 6

  • Laplace, P.S.: Oeuvres, vol. 4, pp. 307–513, vol. 11, pp. 553–558 (1891)

  • Liebmann, H.: Die Kegelschnitte und die Planetenbewegung im nichteuklidischen Raum. Berichte Königl. Sächsischen Gesell. Wiss., Math. Phys. Klasse 54, 393–423 (1902)

    MATH  Google Scholar 

  • Liebmann, H.: Über die Zentralbewegung in der nichteuklidische Geometrie. Berichte Königl. Sächsischen Gesell. Wiss., Math. Phys. Klasse 55, 146–153 (1903)

    Google Scholar 

  • Lobachevsky, N.I.: The new foundations of geometry with full theory of parallels [in Russian], 1835-1838, in Collected Works, vol. 2, GITTL, Moscow (1949)

  • Marsden, J.: Lectures on mechanics. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  • Marsden, J., Ratiu, T.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Springer, New York (1999)

    Book  MATH  Google Scholar 

  • Martínez, R., Simó, C.: Relative equilibria of the restricted three-body problem in curved spaces. Celestial Mech. Dynam. Astronom. 128(2–3), 221–259 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Martínez, R., Simó, C.: On the stability of the Lagrangian homographic solutions in a curved three-body problem on \({\mathbb{S}}^2\). Discrete Contin. Dyn. Syst. Ser. A 33, 1157–1175 (2013)

    MATH  Google Scholar 

  • Moeckel, R.: Celestial Mechanics—especially central configurations, unpublished lecture notes: http://www.math.umn.edu/~rmoeckel/notes/CMNotes.pdf

  • Moeckel, R.: Finiteness of relative equilibria of the four-body problem. Invent. Math. 163, 289–312 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Montanelli, H., Gushterov, N.I.: Computing planar and spherical choreographies. SIAM J. Appl. Dyn. Syst. 15, 235–256 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Moulton, F.R.: The straight line solutions of \(n\) bodies. Ann. Math. 12, 1–17 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  • Naber, G.L.: The Geometry of Minkowski Spacetime. Springer, New York (1991)

    Google Scholar 

  • Pérez-Chavela, E., Reyes Victoria, J.G.: An intrinsic approach in the curved \(N\)-body problem. The positive curvature case. Trans. Am. Math. Soc. 364(7), 3805–3827 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Riemann, B.: Über die Hypothesen welche der Geometrie zu Grunde liegen. Abhandl. Königl. Ges. Wiss. Gött., 13, (1854)

  • Roberts, G.: A continuum of relative equilibria in the five-body problem. Phys. D 127(3–4), 141–145 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Saari, D.: Collisions, rings, and other Newtonian \(N\)-body problems. In: CBMS Regional Conference Series in Mathematics, American Math. Society (2005)

  • Saari, D.: On the role and properties of central configurations. Celest. Mech. 21, 9–20 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Schering, E.: Die Schwerkraft im Gaussischen Räume. Nachr. Königl. Ges. Wiss. Gött. 15, 311–321 (1870)

    MATH  Google Scholar 

  • Schering, E.: Die Schwerkraft in mehrfach ausgedehnten Gaussischen und Riemmanschen Räumen. Nachr. Königl. Ges. Wiss. Gött. 6, 149–159 (1873)

    MATH  Google Scholar 

  • Shchepetilov, A.V.: Nonintegrability of the two-body problem in constant curvature spaces. J. Phys. A Math. Gen. V. 39, 5787–5806 (2006), corrected version at arXiv:math.DS/0601382

  • Smale, S.: Topology and mechanics. I. Invent. Math. 10, 305–331 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Smale, S.: Topology and mechanics, II. The planar \(N\)-body problem. Invent. Math. 11, 45–64 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Smale, S.: Mathematical problems for the next century. Math. Intell. 20(2), 7–15 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Tibboel, P.: Polygonal homographic orbits in spaces of constant curvature. Proc. Am. Math. Soc. 141, 1465–1471 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Tibboel, P.: Existence of a class of rotopulsators. J. Math. Anal. Appl. 404, 185–191 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Tibboel, P.: Existence of a lower bound for the distance between point masses of relative equilibria in spaces of constant curvature. J. Math. Anal. Appl. 416, 205–211 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Wintner, A.: The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton (1947)

    MATH  Google Scholar 

  • Zhu, S.: Eulerian relative equilibria of the curved 3-body problems in \({\mathbb{S}}^2\). Proc. Am. Math. Soc. 142, 2837–2848 (2014)

    Article  MATH  Google Scholar 

  • Zhu, S., Diacu, F.: Almost all 3-body relative equilibria are inclined. Discrete Contin. Dyn. Syst. Ser. S (to appear)

  • Zhu, S., Zhao, S.: Three-dimensional central configurations in \({\mathbb{H}}^3\) and \({\mathbb{S}}^3\). J. Math. Phys. 58(2), 022901 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Cristina Stoica and Florin Diacu enjoyed partial support from Discovery Grants awarded by NSERC of Canada. Shuqiang Zhu was funded by a University of Victoria Scholarship and a David and Geoffrey Fox Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqiang Zhu.

Additional information

Communicated by Tudor Stefan Ratiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diacu, F., Stoica, C. & Zhu, S. Central Configurations of the Curved N-Body Problem. J Nonlinear Sci 28, 1999–2046 (2018). https://doi.org/10.1007/s00332-018-9473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9473-y

Keywords

Mathematics Subject Classification

Navigation