Skip to main content
Log in

Relative equilibria of the restricted three-body problem in curved spaces

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We use a formulation of the N-body problem in spaces of constant Gaussian curvature, \({\kappa }\in \mathbb {R}\), as widely used by A. Borisov, F. Diacu and their coworkers. We consider the restricted three-body problem in \(\mathbb {S}^2\) with arbitrary \({\kappa }>0\) (resp. \(\mathbb {H}^2\) with arbitrary \({\kappa }<0\)) in a formulation also valid for the case \({\kappa }=0\). For concreteness when \({\kappa }>0\) we restrict the study to the case of the three bodies at the upper hemisphere, to be denoted as \(\mathbb {S}^2_+\). The main goal is to obtain the totality of relative equilibria as depending on the parameters \({\kappa }\) and the mass ratio \(\mu \). Several general results concerning relative equilibria and its stability properties are proved analytically. The study is completed numerically using continuation from the \({\kappa }=0\) case and from other limit cases. In particular both bifurcations and spectral stability are also studied. The \(\mathbb {H}^2\) case is similar, in some sense, to the planar one, but in the \(\mathbb {S}^2_+\) case many differences have been found. Some surprising phenomena, like the coexistence of many triangular-like solutions for some values \(({\kappa },\mu )\) and many stability changes will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Borisov, A.V., Mamaev, I.S., Kilin, A.A.: Two-body problem on a sphere. Reduction, stochasticity, periodic orbits. Regul. Chaotic Dyn. 9, 265–279 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chernoïvan, V.A., Mamaev, I.S.: The restricted two-body problem and the Kepler problem in the constant curvature spaces. Regul. Chaotic Dyn. 4, 112–124 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Diacu, F.: Relative Equilibria of the Curved \(N\)-Body Problem Atlantis Studies in Dynamical Systems, vol. 1. Atlantis Press, Amsterdam (2012)

    Book  MATH  Google Scholar 

  • Diacu, F.: Polygonal homographic orbits of the curved 3-body problem. Trans. Am. Math. Soc. 364, 2783–2802 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Diacu F (2014) Relative equilibria of the 3-dimensional curved \(n-\)body problem. Mem. Am. Math. Soc. 228(1071)

  • Diacu, F.: The classical \(N\)-body problem in the context of curved space. Can. J. Math. doi:10.4153/CJM-2016-041-2.

  • Diacu, F.: Bifurcations of the Lagrangian orbits from the classical to the curved 3-body problem. arXiv:1508.06043

  • Diacu, F., Martínez, R., Pérez-Chavela, E., Simó, C.: On the stability of tetrahedral relative equilibria in the positively curved 4-body problem. Phys. D. 256–257, 21–35 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Diacu, F., Pérez-Chavela, E.: Homographic solutions of the curved 3-body problem. J. Differ. Equ. 250, 340–366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • García-Naranjo, L.C., Marrero, J.C., Pérez-Chavela, E., Rodríguez-Olmos, M.: Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2. J. Differ. Equ. 260, 6375–6404 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kilin, A.A.: Libration points in spaces S2 and L2. Regul. Chaotic Dyn. 4, 91–103 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Kozlov, V.V., Harin, A.O.: Kepler’s problem in constant curvature spaces. Celest. Mech. Dyn. Astron. 54, 393–399 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kozlov, V.V.: Problemata nova, ad quorum solutionem mathematici invitantur. Dynamical systems in classical mechanics. Am. Math. Soc. Transl. Ser. 2, 168, pp. 239–254. Am. Math. Soc., Providence, RI, (1995)

  • Martínez, R., Samà, A., Simó, C.: Stability diagram for 4D linear periodic systems with applications to homographic solutions. J. Diff. Equ. 226, 619–651 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Martínez, R., Samà, A., Simó, C.: Analysis of the stability of a family of singular–limit linear periodic systems in \({\mathbb{R}}^{4}\) Applications. J. Diff. Eqs. 226, 652–686 (2006)

  • Martínez, R., Simó, C.: On the stability of the Lagrangian homographic solutions in a curved three-body problem on \({{\mathbb{S}}^{2}}\). Discrete Contin. Dyn. Syst. A. 33, 1157–1175 (2013)

    MathSciNet  MATH  Google Scholar 

  • Siegel, C.L., Moser, J.K.: Lectures on Celestial Mechanics. Springer, Heidelberg (1971)

    Book  MATH  Google Scholar 

  • Simó, C.: Analytical and numerical computation of invariant manifolds. In Benest, D., Froeschlé, C. (eds) Modern Methods in Celestial Mechanics, pp.  285–330. Editions Frontières (1990)

  • Simó, C., Sousa-Silva, P., Terra, M.: Practical Stability Domains near \(L_{4,5}\) in the Restricted Three-Body Problem: Some preliminary facts. In Ibáñez, S. et al. (eds) Progress and Challenges in Dynamical Systems, 54, pp. 367–382. Springer, Berlin (2013)

  • Szebehely, V.: Theory of Orbits. Academic Press, New York (1967)

    Google Scholar 

  • Zhu, S.: Eulerian relative equilibria of the curved 3-body problems in \({{\mathbb{S}}^2}\). Proc. Am. Math. Soc. 142, 2837–2848 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research has been partly supported by grant 2014 SGR 1145 (Catalonia) and grant MTM2013-41168-P (Spain). The authors are indebted to A. Borisov, F. Diacu and E. Pérez-Chavela for helpful discussions, to the referee for helpful suggestions and to the organizers of the conference on Global Dynamics in Hamiltonian Systems for allowing them to present the results on this event.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Martínez.

Appendix

Appendix

In this Appendix we give reduced formulas for the functions which appear in the equations of the restricted problem.

Let us consider the functions \( \rho _{ij}, f_{ij}, g_{ij} \) defined in (5). It is easy to check that they can be written as

$$\begin{aligned}&{\kappa }\rho _{ij}^2 = 2 [1- {\kappa }(\xi _i \xi _j + \eta _i \eta _j) - E_i E_j], \nonumber \\&f_{ij} = {\kappa }(\xi _i \xi _j + \eta _i \eta _j) + E_i E_j, \qquad 1- f_{ij}^2 = {\kappa }\Delta _{ij}, \end{aligned}$$
(50)
$$\begin{aligned}&\Delta _{ij} \!= \!\xi _i^2 \!+\! \eta _i^2 \!+ \!\xi _j^2\! +\! \eta _j^2\! -\! {\kappa }( \xi _i^2\! +\! \eta _i^2)(\xi _j^2 \!+\! \eta _j^2)- {\kappa }(\xi _i\xi _j\!+\!\eta _i\eta _j)^2-2(\xi _i\xi _j+\eta _i\eta _j ) E_i E_j, \nonumber \\ \end{aligned}$$
(51)
$$\begin{aligned}&g_{ij}:= \frac{1}{d_{ij}^3} = \left( \frac{{\kappa }}{1-f_{ij}^2} \right) ^{3/2} = \frac{1}{\Delta _{ij}^{3/2}}, \end{aligned}$$
(52)

where \( E_i=\sqrt{1- {\kappa }(\xi _i^2 + \eta _i^2)}. \)

If \( \mathbf{U}_1=(\xi _1,\eta _1)^T=(r_1,0)^T,\) \(\mathbf{U}_2=(\xi _2,\eta _2)^T=(-r_2,0)^T, \) \( \mathbf{U}_3= (\xi _3,\eta _3)^T = (x,y)^T, \) then

$$\begin{aligned}&{\kappa }\rho _{13}^2 = 2 (1 - {\kappa }r_1 x - E_1 E_3), \quad {\kappa }\rho _{23}^2 = 2 (1 + {\kappa }r_2 x - E_2 E_3), \end{aligned}$$
(53)
$$\begin{aligned}&f_{13} = {\kappa }r_1 x + E_1 E_3, \quad f_{23} = - {\kappa }r_2 x + E_2 E_3, \end{aligned}$$
(54)
$$\begin{aligned}&g_{13} = \Delta _{13}^{-3/2}, \quad g_{23} = \Delta _{23}^{-3/2}, \quad \Delta _{13}= y^2 + S_1^2, \quad \Delta _{23} = y^2 + S_2^2, \end{aligned}$$
(55)
$$\begin{aligned}&S_1 = x E_1 - r_1 E_3, \quad S_2 = x E_2 + r_2 E_3, \end{aligned}$$
(56)

where \( E_j= \sqrt{1-{\kappa }r_j^2}, \) \( j=1,2\), \(E_3 = \sqrt{1-{\kappa }(x^2 + y^2)} \). Then one has

$$\begin{aligned} f_{13} x - r_1 = - {\kappa }r_1 y^2+ S_1 E_3, \qquad f_{23} x + r_2 = {\kappa }r_2 y^2 + S_2 E_3 \end{aligned}$$
(57)

and, furthermore

$$\begin{aligned} \frac{\partial f_{13}}{\partial x } = - \frac{{\kappa }S_1}{E_3}, \qquad \frac{\partial f_{23}}{\partial x } = - \frac{{\kappa }S_2}{E_3}, \qquad \frac{\partial S_1}{\partial x } = \frac{f_{13}}{E_3}, \qquad \frac{\partial S_2}{\partial x } = \frac{f_{23}}{E_3}. \end{aligned}$$
(58)

Lemma 7.1

Assume \({\kappa }>0\) and \(r_1,r_2\) fixed. Then \( f_{13} \) and \( f_{23} \) are convex functions in \( C_{{\kappa }}:=\{ (x,y)\in \mathbb {R}^2 \,|\,{\kappa }(x^2+y^2) < 1 \} \), such that for any \( (x,y) \in C_{{\kappa }} \)

$$\begin{aligned} - \sqrt{{\kappa }} r_1< f_{13} \le 1, \qquad - \sqrt{{\kappa }} r_2 < f_{23} \le 1.\end{aligned}$$

Moreover \(f_{13}=0 \) along the curve \( \gamma _{13} = \{ (x,y) | x \le 0, {\kappa }(x^2 + E_1^2 y^2 ) = E_1^2 \} \), and \( f_{23}=0 \) on the curve \( \gamma _{23} = \{ (x,y) | x \ge 0, {\kappa }(x^2 + E_2^2 y^2 ) = E_2^2 \} \).

If \({\kappa }<0\), then \(f_{13}>0\) and \(f_{23}>0\) at any point.

Proof

Using

$$\begin{aligned} \frac{\partial ^2 f_{13}}{\partial x^2} = - \frac{{\kappa }E_1}{E_3^3} (1-{\kappa }y^2)< 0, \quad \frac{\partial ^2 f_{13}}{\partial y \partial x} = - {\kappa }^2 x y \frac{E_1}{E_3^3}, \quad \frac{\partial ^2 f_{13}}{\partial y^2} = - \frac{{\kappa }E_1}{E_3^3} (1-{\kappa }x^2) <0, \end{aligned}$$

it follows that the Hessian of \(f_{13} \) is negative definite in \(C_{{\kappa }}\). Similar formulas hold for \(f_{23}\) by replacing \(E_1\) by \(E_2\). The maximum for \(f_{13}\) is equal to 1 and it is attained at the point \((x,y)=(r_1,0)\) and the minimum is achieved at the point \((x,y)= (-1/\sqrt{{\kappa }},0).\) Similar for \(f_{23}\). The case \({\kappa }<0\) is obvious from (3). \(\square \)

Let us consider the functions \( {\hat{F}} \), \( {\hat{G}} \) introduced in Sect. 6. We compute the partial derivatives

$$\begin{aligned} {\hat{F}}_x= & {} \frac{1}{E_3} \left\{ - 3 m_1 (r_1 - x f_{13} ) f_{13} S_1 \Delta _{13}^{-5/2} + 3 m_2 (r_2 + x f_{23} ) f_{23} S_2 \Delta _{23}^{-5/2} \right. \nonumber \\&\left. -E_3 [ m_1 f_{13} g_{13} + m_2 f_{23} g_{23} ] + {\kappa }x [ m_1 S_1 g_{13} + m_2 S_2 g_{23} ] \right\} , \nonumber \\ {\hat{F}}_y= & {} \frac{y}{E_3} \left\{ - 3 m_1 (r_1 - x f_{13} ) E_1 f_{13} \Delta _{13}^{-5/2} + 3 m_2 (r_2 + x f_{23} ) E_2 f_{23} \Delta _{23}^{-5/2} \right. \nonumber \\&\left. + {\kappa }x \, [ m_1 E_1 g_{13} + m_2 E_2 g_{23} ] \right\} , \nonumber \\ {\hat{G}}_x= & {} \frac{y}{E_3} \left\{ 3 m_1 S_1 f_{13}^2 \Delta _{13}^{-5/2} + 3 m_2 S_2 f_{23}^2 \Delta _{23}^{-5/2} + {\kappa }\, [m_1 S_1 g_{13} + m_2 S_2 g_{23} \,] \right\} , \nonumber \\ {\hat{G}}_y= & {} -\left[ m_1 f_{13} g_{13} + m_2 f_{23} g_{23} \right] \nonumber \\&+ \frac{y^2}{E_3} \left\{ 3 m_1 f_{13}^2 E_1 \Delta _{13}^{-5/2} + 3 m_2 f_{23}^2 E_2 \Delta _{23}^{-5/2} + {\kappa }\,[ \, m_1 E_1 g_{13} + m_2 E_2 g_{23} \,]\right\} .\nonumber \\ \end{aligned}$$
(59)

Lemma 7.2

For any real \({\kappa }\), the following identity holds

$$\begin{aligned} {\hat{F}}_x+{\hat{G}}_y = \frac{1}{E_3} [m_1 E_1 g_{13} + m_2 E_2 g_{23} ]. \end{aligned}$$
(60)

Proof

From (59) it follows

$$\begin{aligned} {\hat{F}}_x+{\hat{G}}_y= & {} -2 \left[ m_1 f_{13} g_{13} + m_2 f_{23} g_{23} \right] + \frac{{\kappa }x}{E_3} \left[ m_1 S_1 g_{13} + m_2 S_2 g_{23}\right] \\&+ \frac{{\kappa }y^2}{E_3}\left[ \, m_1 E_1 g_{13} + m_2 E_2 g_{23} \,\right] \\&+\frac{3 m_1 f_{13}}{E_3} \Delta _{13}^{-5/2} \left[ (r_1 - x f_{13}) S_1 + y^2 f_{13} E_1 \right] \\&+ \frac{3 m_2 f_{23}}{E_3} \Delta _{23}^{-5/2} \left[ (r_2 + x f_{23}) S_2 + y^2 f_{23} E_2 \right] . \end{aligned}$$

Using (57) and (54)

$$\begin{aligned} (r_1 - x f_{13}) S_1 + y^2 f_{13} E_1 = E_3 (y^2 + S_1^2), \quad (r_2 + x f_{23}) S_2 + y^2 f_{23} E_2 = E_3 (y^2 + S_2^2). \end{aligned}$$

Note that from (55), \( \Delta _{13}^{-5/2} (y^2 + S_1^2) = \Delta _{13}^{-3/2}= g_{13} \) and \( \Delta _{23}^{-5/2} (y^2 + S_2^2) = g_{23} \). Using (56) to write

$$\begin{aligned} m_1 S_1 g_{13} + m_2 S_2 g_{23} = x \left[ \, m_1 E_1 g_{13} + m_2 E_2 g_{23} \,\right] + E_3 \left[ - m_1 r_1 g_{13} + m_2 r_2 g_{23} \right] , \end{aligned}$$

one can easily obtain (60) after some cancellations. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, R., Simó, C. Relative equilibria of the restricted three-body problem in curved spaces. Celest Mech Dyn Astr 128, 221–259 (2017). https://doi.org/10.1007/s10569-016-9750-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-016-9750-8

Keywords

Mathematics Subject Classification

Navigation