Skip to main content
Log in

On the Sectional Curvature Along Central Configurations

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

In this paper we characterize planar central configurations in terms of a sectional curvature value of the Jacobi–Maupertuis metric. This characterization works for the N-body problem with general masses and any 1/rα potential with α > 0. We also obtain dynamical consequences of these curvature values for relative equilibrium solutions. These curvature methods work well for strong forces (α ≥ 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albouy, A., Cabral, H.E., and Santos, A.A., Some Open Problems on the Classical N-Body Problem, Celestial Mech. Dynam. Astronom., 2012, vol. 113, no. 4, pp. 369–375.

    Article  MathSciNet  Google Scholar 

  2. Arnol’d, V. I., Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts in Math., vol. 60, New York: Springer, 1989.

  3. Barbosu, M. and Elmabsout, B., Courbures de Riemann dans le problème plan des trois corps: Stabilité, C. R. Acad. Sci. Paris. Sér. 2b, 1999, vol. 327, pp. 959–962.

    MATH  Google Scholar 

  4. Barutello, V., Jadanza, R. D., and Portaluri, A., Morse Index and Linear Stability of the Lagrangian Circular Orbit in a Three-Body-Type Problem via Index Theory, Arch. Ration. Mech. Anal., 2016, vol. 219, no. 1, pp. 387–444.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chenciner, A., Collisions totales, mouvements complètement paraboliques et réduction des homothéties dans le problème des n corps, Regul. Chaotic Dyn., 1998, vol. 3, no. 3, pp. 93–106.

    MATH  Google Scholar 

  6. Fujiwara, T., Fukuda, H., Ozaki, H., and Taniguchi, T., Saari’s Homographic Conjecture for General Masses in Planar Three-Body Problem under Newton Potential and a Strong Force Potential, J. Phys. A, 2015, vol. 48, no. 26, 265205, 17 pp.

    Article  MathSciNet  MATH  Google Scholar 

  7. Hu, X. and Sun, Sh., Morse Index and Stability of Elliptic Lagrangian Solutions in the Planar Three-Body Problem, Adv. Math., 2010, vol. 223, no. 1, pp. 98–119.

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu, X. and Yu, G., An Index Theory for Zero Energy Solutions of the Planar Anisotropic Kepler Problem, Comm. Math. Phys., 2018, vol. 361, no. 2, pp. 709–736.

    Article  MathSciNet  MATH  Google Scholar 

  9. Jackman, C. and Meléndez, J., Hyperbolic Shirts Fit a 4-Body Problem, J. Geom. Phys., 2018, vol. 123, pp. 173–183.

    Article  MathSciNet  MATH  Google Scholar 

  10. Jackman, C. and Montgomery, R., No Hyperbolic Pants for the 4-Body Problem with Strong Potential, Pacific J. Math., 2016, vol. 280, no. 2, pp. 401–410.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kobayashi, Sh., Hyperbolic Complex Spaces, Grundlehren Math. Wiss., vol. 318, Berlin: Springer, 1998.

  12. Lee, J.M., Riemannian Manifolds: An Introduction to Curvature, Grad. Texts in Math., vol. 176, New York: Springer, 1997.

  13. Martínez, R., Samà, A., and Simó, C., Stability of Homographic Solutions of the Planar Three-Body Problem with Homogeneous Potentials, in Proc. of the Internat. Conf. on Differential Equations (EQUADIFF’2003), F. Dumortier, H. Broer, J. Mawhin, A. Van der bauwhede, S. Verduyn Lunel (Eds.), Hackensack,N.J.: World Sci., 2005, pp. 1005–1010.

    Google Scholar 

  14. Moeckel, R., Lectures on Central Configurations, https://doi.org/www.math.umn.edu/rmoeckel/notes/CentralConfigurations (2014).

    MATH  Google Scholar 

  15. Moeckel, R., A Computer Assisted Proof of Saari’s Conjecture for the Three-Body Problem in Rd, Discrete Contin. Dyn. Syst. Ser. S, 2008, vol. 1, no. 4, pp. 631–646.

    Article  MathSciNet  MATH  Google Scholar 

  16. Montgomery, R., The Hyperbolic Plane, Three-Body Problems, andMnëv’s Universality Theorem, Regul. Chaotic Dyn., 2017, vol. 22, no. 6, pp. 688–699.

    Article  MATH  Google Scholar 

  17. Montgomery, R., Fitting Hyperbolic Pants to a Three-Body Problem, Ergodic Theory Dynam. Systems, 2005, vol. 25, no. 3, pp. 921–947.

    Article  MathSciNet  MATH  Google Scholar 

  18. Montgomery, R., Blow-Up for Realizing Homotopy Classes in the Three-Body Problem, arXiv:1507.07982 (2015).

    Google Scholar 

  19. Pin, O.Ch., Curvature and Mechanics, Advances in Math., 1975, vol. 15, pp. 269–311.

    Article  MathSciNet  MATH  Google Scholar 

  20. Paternain, G.P., Geodesic Flows, Progr. Math., vol. 180, Boston,Mass.: Birkhüser, 2012.

  21. Roberts, G. E., Some Counterexamples to a Generalized Saari’s Conjecture, Trans. Amer. Math. Soc., 2006, vol. 358, no. 1, pp. 251–265.

    Article  MathSciNet  MATH  Google Scholar 

  22. Roberts, G.E., Linear Stability of the Elliptic Lagrangian Triangle Solutions in the Three-Body Problem, J. Differential Equations, 2002, vol. 182, no. 1, pp. 191–218.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Connor Jackman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackman, C., Meléndez, J. On the Sectional Curvature Along Central Configurations. Regul. Chaot. Dyn. 23, 961–973 (2018). https://doi.org/10.1134/S1560354718070109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354718070109

Keywords

MSC2010 numbers

Navigation