Skip to main content
Log in

Dynamics of Coupled Cell Networks: Synchrony, Heteroclinic Cycles and Inflation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We consider the dynamics of small networks of coupled cells. We usually assume asymmetric inputs and no global or local symmetries in the network and consider equivalence of networks in this setting; that is, when two networks with different architectures give rise to the same set of possible dynamics. Focussing on transitive (strongly connected) networks that have only one type of cell (identical cell networks) we address three questions relating the network structure to dynamics. The first question is how the structure of the network may force the existence of invariant subspaces (synchrony subspaces). The second question is how these invariant subspaces can support robust heteroclinic attractors. Finally, we investigate how the dynamics of coupled cell networks with different structures and numbers of cells can be related; in particular we consider the sets of possible “inflations” of a coupled cell network that are obtained by replacing one cell by many of the same type, in such a way that the original network dynamics is still present within a synchrony subspace. We illustrate the results with a number of examples of networks of up to six cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles, M., Bergman, H., Gat, I., Meilijson, I., Seidmann, E., Tishby, M.: Cortical activity flips among quasi-stationary states. Proc. Natl. Acad. Sci. 92, 8616–8620 (1995)

    Article  Google Scholar 

  • Afraimovich, V.S., Bunimovich, L.A.: Dynamical networks: interplay of topology, interactions and local dynamics. Nonlinearity 20, 1761–1771 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Afraimovich, V.S., Zhigulin, V.P., Rabinovich, M.I.: On the origin of reproducible sequential activity in neural circuits. Chaos 14(4), 1123–1129 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Agarwal, N.: Inflation of strongly connected networks. Math. Proc. Camb. Philos. Soc. (2010, accepted for publication)

  • Agarwal, N., Field, M.: Dynamical equivalence of networks of coupled dynamical systems I: asymmetric inputs. Nonlinearity 23, 1245–1268 (2010a)

    Article  MathSciNet  MATH  Google Scholar 

  • Agarwal, N., Field, M.: Dynamical equivalence of networks of coupled dynamical systems II: general case. Nonlinearity 23, 1269–1289 (2010b)

    Article  MathSciNet  MATH  Google Scholar 

  • Aguiar, M.A.D., Dias, A.P.S.: Minimal coupled cell networks. Nonlinearity 20, 193–219 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Aguiar, M.A.D., Dias, A.P.S.: Synchrony subspaces of coupled cell networks (2010, in preparation)

  • Aguiar, M.A.D., Castro, S.B.S.D., Labouriau, I.S.: Dynamics near a heteroclinic network. Nonlinearity 18(1), 391–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Aguiar, M.A.D., Dias, A.P.S., Golubitsky, M., Leite, M.C.A.: Bifurcations from regular quotient networks: a first insight. Physica D 238, 137–155 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Antoneli, F., Dias, A.P.S., Paiva, R.C.: Hopf bifurcation in coupled cell networks with interior symmetries. SIAM J. Appl. Math. 7, 220–248 (2008)

    MathSciNet  MATH  Google Scholar 

  • Ashwin, P., Borresen, J.: Discrete computation using a perturbed heteroclinic network. Phys. Rev. E 70, 026203 (2004)

    Article  MathSciNet  Google Scholar 

  • Ashwin, P., Field, M.: Heteroclinic networks in coupled cell systems. Arch. Ration. Mech. Anal. 148, 107–143 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Ashwin, P., Field, M.: Product dynamics for homoclinic attractors. Proc. R. Soc., Ser. A 461, 155–177 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Ashwin, P., Swift, J.: The dynamics of n weakly coupled identical oscillators. J. Nonlinear Sci. 2, 69–108 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Ashwin, P., Orosz, G., Wordsworth, J., Townley, S.: Reliable switching between cluster states for globally coupled phase oscillators. SIAM J. Appl. Dyn. Syst. 6, 728–758 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Dias, A.P.S., Lamb, J.: Local bifurcation in symmetric coupled cell networks: linear theory. Physica D 223, 93–108 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Dias, A.P.S., Stewart, I.: Linear equivalence and ODE-equivalence for coupled cell networks. Nonlinearity 18, 1003–1020 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Dionne, B., Golubitsky, M., Stewart, I.: Coupled cells with internal symmetry: I. Wreath products. Nonlinearity 9, 559–574 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • dos Reis, G.L.: Structural stability of equivariant vector fields on two manifolds. Trans. Am. Math. Soc. 283, 633–643 (1984)

    Article  MATH  Google Scholar 

  • Ermentrout, G.B.: xppaut (dynamical systems software). Available from http://www.math.pitt.edu/~bard/bardware/ (2000)

  • Field, M.J.: Dynamics, Bifurcation and Symmetry. Pitman Research Notes in Mathematics, vol. 356 (1996)

    Google Scholar 

  • Field, M.J.: Combinatorial dynamics. Dyn. Syst. 19, 217–243 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Field, M.J.: Dynamics and Symmetry. Imperial College Press Advanced Texts in Mathematics, vol. 3 (2007)

    Book  MATH  Google Scholar 

  • Field, M.J., Richardson, R.W.: Symmetry breaking and branching patterns in equivariant bifurcation theory II. Arch. Ration. Mech. Anal. 120, 147–190 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., Stewart, I.: Nonlinear dynamics of networks: the groupoid formalism. Bull. Am. Math. Soc. 43, 305–364 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., Schaeffer, D.G., Stewart, I.N.: Singularities and Groups in Bifurcation Theory, vol. II. Appl. Math. Sci., vol. 69. Springer, New York (1988)

    Google Scholar 

  • Golubitsky, M., Stewart, I., Buono, P.L., Collins, J.J.: Symmetry in locomotor central pattern generators and animal gaits. Nature 401, 693–695 (1999)

    Article  Google Scholar 

  • Golubitsky, M., Pivato, M., Stewart, I.: Interior symmetry and local bifurcation in coupled cell networks. Dyn. Syst. 19, 389–407 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., Stewart, I., Török, A.: Patterns of synchrony in coupled cell networks with multiple arrows. SIAM J. Appl. Dyn. Syst. 4(1), 78–100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Guckenheimer, J., Holmes, P.: Structurally stable heteroclinic cycles. Math. Proc. Camb. Philos. Soc. 103, 189–192 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Hansel, D., Mato, G., Meunier, C.: Phase dynamics for weakly coupled Hodgkin-Huxley neurons. Europhys. Lett. 23, 367–372 (1993)

    Article  Google Scholar 

  • Hofbauer, J.: Heteroclinic cycles on the simplex. In: Proc. Int. Conf. Nonlinear Oscillations. Janos Bolyai Math. Soc., Budapest (1987)

    Google Scholar 

  • Hofbauer, J.: Heteroclinic cycles in ecological differential equations. Tatra Mt. Math. Publ. 4, 105–116 (1994)

    MathSciNet  MATH  Google Scholar 

  • Hofbauer, J., Sigmund, K.: The Theory of Evolution and Dynamical Systems. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  • Hofbauer, J., Sigmund, K.: Evolutionary Games and Replicator Dynamics. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  • Homburg, A.J., Knobloch, J.: Switching homoclinic networks. Dyn. Syst. 25(3), 443 (2010). doi:10.1080/14689367.2010.499294

    Article  MathSciNet  MATH  Google Scholar 

  • Karabacak, O., Ashwin, P.: Heteroclinic ratchets in a system of four coupled oscillators. J. Nonlinear Sci. 20, 105–129 (2010)

    Article  MATH  Google Scholar 

  • Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. Proc. Natl. Acad. Sci. 102(39), 13773–13778 (2005)

    Article  Google Scholar 

  • Kirk, V., Silber, M.: A competition between heteroclinic cycles. Nonlinearity 7(6), 1605–1622 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Kiss, I., Rusin, C., Kori, H., Hudson, J.: Engineering complex dynamical structures: sequential patterns and desynchronization. Science 316, 1886–1889 (2007)

    Article  MathSciNet  Google Scholar 

  • Kitchens, B.P.: Symbolic Dynamics. Universitext. Springer, Berlin (1998)

    MATH  Google Scholar 

  • Krupa, M.: Robust heteroclinic cycles. J. Nonlinear Sci. 7, 129–176 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Krupa, M., Melbourne, I.: Asymptotic stability of heteroclinic cycles in systems with symmetry. Ergod. Theory Dyn. Syst. 15, 121–147 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Krupa, M., Melbourne, I.: Asymptotic stability of heteroclinic cycles in systems with symmetry, II. Proc. R. Soc. Edinb. A 134A, 1177–1197 (2004)

    Article  MathSciNet  Google Scholar 

  • Leite, M.C.A., Golubitsky, M.: Homogeneous three-cell networks. Nonlinearity 19, 2313–2363 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • May, R.M., Leonard, W.J.: Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29, 243–253 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Melbourne, I., Chossat, P., Golubitsky, M.: Heteroclinic cycles involving periodic solutions in mode interactions with O(2) symmetry. Proc. R. Soc. Edinb. 113A, 315–345 (1989)

    MathSciNet  Google Scholar 

  • Memmesheimer, R.-M., Timme, M.: Designing the dynamics of spiking neural networks. Phys. Rev. Lett. 97, 188101 (2006)

    Article  Google Scholar 

  • Nowotny, T., Rabinovich, M.: Dynamical origin of independent spiking and bursting activity in neural microcircuits. Phys. Rev. Lett. 98, 128106 (2007)

    Article  Google Scholar 

  • Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization; A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  • Rabinovich, M., Huerta, R., Laurent, G.: Transient dynamics for neural processing. Science 321, 48–50 (2008)

    Article  Google Scholar 

  • Restrepo, J.G., Ott, E., Hunt, B.R.: Emergence of synchronization in complex networks of interacting dynamical systems. Physica D 224, 114–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Scheel, A., Chossat, P.: Bifurcation d’orbites périodiques à partit d’un cycle homoclinic symétrique. C. R. Acad. Sci. Paris Sér. I 314, 49–54 (1992)

    MathSciNet  MATH  Google Scholar 

  • Stewart, I.: The lattice of balanced equivalence relations of a coupled cell network. Math. Proc. Camb. Philos. Soc. 143(1), 165–183 (2007)

    Article  MATH  Google Scholar 

  • Stewart, I., Golubitsky, M., Pivato, M.: Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J. Appl. Dyn. Syst. 2(4), 606–646 (2003)

    Article  MathSciNet  Google Scholar 

  • Strogatz, S.: From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhigulin, V.: Dynamical motifs: building blocks of complex dynamics in sparsely connected random networks. Phys. Rev. Lett. 92, 238701 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Field.

Additional information

Communicated by E. Knobloch.

Research of M.F. supported in part by NSF Grants DMS-0600927 & DMS-0806321 and of P.A. by EPSRC Grant EP/C510771. Research of M.A. and A.D. supported in part by CMUP financed by FCT through the programmes POCTI and POSI, with Portuguese and European Community structural funds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguiar, M., Ashwin, P., Dias, A. et al. Dynamics of Coupled Cell Networks: Synchrony, Heteroclinic Cycles and Inflation. J Nonlinear Sci 21, 271–323 (2011). https://doi.org/10.1007/s00332-010-9083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-010-9083-9

Keywords

Mathematics Subject Classification (2000)

Navigation