Skip to main content
Log in

Robust heteroclinic cycles

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

One phenomenon in the dynamics of differential equations which does not typically occur in systems without symmetry is heteroclinic cycles. In symmetric systems, cycles can be robust for symmetry-preserving perturbations and stable. Cycles have been observed in a number of simulations and experiments, for example in rotating convection between two plates and for turbulent flows in a boundary layer. Theoretically the existence of robust cycles has been proved in the unfoldings of some low codimension bifurcations and in the context of forced symmetry breaking from a larger to a smaller symmetry group. In this article we review the theoretical and the applied research on robust cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Alexander, I. Kan, J. A. Yorke, and Zhiping You. Riddled Basins.Int. J. Bifur. Chaos 2 (1992), 795–813.

    Article  MATH  Google Scholar 

  2. D. Armbruster. More on structurally stable H-orbits, inProceedings of the International Conference on Bifurcation Theory and Its Numerical Analysis, Li Kaitai et al., eds., Xian Jiaotong University Press, Xian, China (1989).

    Google Scholar 

  3. D. Armbruster and P. Chossat. Heteroclinic orbits in a spherically invariant system.Physica D 50 (1991), 155–176.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Armbruster, J. Guckenheimer, and P. Holmes. Heteroclinic cycles and modulated waves in systems with O(2) symmetry.Physica D 29 (1988), 257–282.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Armbruster, J. Guckenheimer, and P. Holmes. Kuramoto-Sivashinsky dynamics on the center unstable manifold.SIAM J. Appl. Math. 49 (1989), 676–691.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Armbruster and E. Ihrig. Topological constraints for explicit symmetry breaking.Lectures in Applied Mathematics 29 (1993), 37–47.

    MathSciNet  Google Scholar 

  7. D. G. Aronson, S. A. van Gils, and M. Krupa. Homoclinic twist bifurcations with ℤ2 symmetry.J. Nonlin. Sci. 4 (1994), 195–219.

    Article  MATH  Google Scholar 

  8. P. Ashwin, J. Buescu, and I. N. Stewart. From attractor to a chaotic saddle: a tale of transverse instability.Nonlinearity 9 (1996), 703–737.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Ashwin and P. Chossat. Attractors for robust heteroclinic sets with a continuum of connections. PreprintINLN Université de Nice 96.6 (1996).

    Google Scholar 

  10. N. Aubry, P. Holmes, J. Lumley, and E. Stone. The dynamics of coherent structures in the wall region of a turbulent boundary layer.J. Fluid Mech. 192 (1988), 115–173.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Berkooz, P. Holmes, and J. L. Lumley. The proper orthogonal decomposition in the analysis of turbulent flows.Ann. Rev. Fluid Mech. 25 (1993), 539–575.

    Article  MathSciNet  Google Scholar 

  12. G. Berkooz, P. Holmes, and J. L. Lumley. Intermittent dynamics in simple models of the turbulent wall layer.J. Fluid Mech. 230 (1991), 75–95.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Berkooz, P. Holmes, and J. L. Lumley. On the relation between low-dimensional models and the dynamics of coherent structures in the turbulent wall layer.Theoret. Comput. Fluid Dyn. 4 (1993), 255–269.

    Article  MATH  Google Scholar 

  14. W. Brannath. Heteroclinic networks on the simplex.Nonlinearity 7 (1994), 1367–1384.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. M. Busse. Transition to turbulence in Rayleigh-Bènard convection. InHydrodynamic Instabilities and the Transition to Turbulence (H. L. Swinney and J. P. Gollub eds.) Springer-Verlag, New York (1981), 97–137.

    Google Scholar 

  16. F. M. Busse. Transition to turbulence via the statistical limit cycle route. InChaos and Order in Nature (H. Haken ed.), Springer-Verlag, New York (1981).

    Google Scholar 

  17. F. M. Busse. Transition to turbulence via the statistical limit cycle route. InTurbulence and Chaotic Phenomena in Fluids (T. Tatsumi ed.), North-Holland, Amsterdam (1984).

    Google Scholar 

  18. F. M. Busse and R. M. Clever. Nonstationary convection in a rotating system.Recent Development in Theoretical and Experimental Fluid Mechanics (U. Müller, K. G. Roessner, and B. Schmidt, eds.) Springer-Verlag, New York (1979), 376–385.

    Google Scholar 

  19. F. M. Busse and K. E. Heikes. Convection in a rotating layer: A simple case of turbulence.Science 208 (1980), 173–175.

    Article  Google Scholar 

  20. S. Campbell and P. Holmes. Heteroclinic cycles and modulated traveling waves in a system with D4 symmetry.Physica D 59 (1992), 52–78.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Campbell and P. Holmes. Bifurcation from O(2) symmetric heteroclinic cycles with three interacting modes.Nonlinearity 4 (1991), 697–726.

    Article  MATH  MathSciNet  Google Scholar 

  22. T. Clune. Thesis, Pattern selection in convective systems. University of California-Berkeley, Berkeley, 1993.

    Google Scholar 

  23. T. Clune and E. Knobloch. Pattern selection in three-dimensional magnetoconvection.Physica D 74, 151–176 (1994).

    Article  MATH  Google Scholar 

  24. P. Chossat, M. Krupa, I. Melbourne, and A. Scheel. Transverse bifurcations of homoclinic cycles. To appear inPhysica D (1996).

  25. P. Chossat. Forced reflectional symmetry breaking of an O(2) symmetric homoclinic cycle.Nonlinearity 6 723–731 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  26. P. Chossat and M. J. Field. Geometric analysis of the effect of symmetry breaking perturbations on an O(2) invariant homoclinic cycle. InNormal Forms and Homoclinic Chaos (W. F. Langford and W. Nagata eds.) Fields Institute Communications, American Mathematical Society, Providence, RI (1995), Vol. 4, pp. 21–42.

    Google Scholar 

  27. M. Dellnitz, M. J. Field, M. Golubitsky, A. Hohmann, and J. Ma. Cycling chaos.Int. J. Bifur. Chaos 5(4) (1995) 1243–1247.

    Article  MATH  MathSciNet  Google Scholar 

  28. B. Dionne, M. J. Field, and M. Krupa. Heteroclinic cycles in problems with wreath product symmetry. In preparation.

  29. B. Dionne, M. Golubitsky, and I. Stewart. Coupled cells with internal symmetries. Part I: wreath products.Nonlinearity 9 (1996), 559–574.

    Article  MATH  MathSciNet  Google Scholar 

  30. M. J. Field. Equivariant dynamical systems.Trans. Am. Math. Soc. 259 (1980), 185–205.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. J. Field. Equivariant bifurcation theory and symmetry breaking.J. Dyn. Diff. Eqs. 1 (1989), 369–421.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. J. Field. Bifurcation and symmetry breaking from a homoclinic cycle with zero eigenvalues. In preparation.

  33. M. J. Field.Lectures on Bifurcations, Dynamics and Symmetry, Res. Notes in Math. 356, Addison-Wesley-Longman, Harlow, Essex (1996). [Appendix A coauthored with Peng].

    MATH  Google Scholar 

  34. M. J. Field and R. W. Richardson. Symmetry breaking and branching patterns in equivariant branching theory II.Arch. Rat. Mech. Anal. 120 (1992), 147–190.

    Article  MATH  MathSciNet  Google Scholar 

  35. M. J. Field and J. W. Swift. Stationary bifurcation to limit cycles and heteroclinic cycles.Nonlinearity 4 (1991), 1001–1043.

    Article  MATH  MathSciNet  Google Scholar 

  36. M. J. Field and J. W. Swift. The Hopf bifurcation and the Hopf fibration.Nonlinearity 7 (1994), 385–402.

    Article  MATH  MathSciNet  Google Scholar 

  37. R. Friedrich and H. Haken. Static, wavelike, and chaotic thermal convection in spherical geometries.Phys. Rev. A 34 (1986), 2100–2120.

    Article  Google Scholar 

  38. A. Gaunersdorfer. Time averages for heteroclinic attractors.SIAM J. Appl. Math. 52 (1992), 1476–1489.

    Article  MATH  MathSciNet  Google Scholar 

  39. H. F. Goldstein, E. Knobloch, and M. Silber. Planform selection in rotating convection: Hexagonal symmetry.Phys. Rev. A 46 (1992), 4755–4761.

    Article  Google Scholar 

  40. M. Golubitsky, I. N. Stewart, and D. G. Schaeffer.Singularities and Groups in Bifurcation Theory, Vol. II, Appl. Math. Sci. Ser.69, Springer-Verlag, New York (1988).

    MATH  Google Scholar 

  41. J. Guckenheimer and P. Holmes. Structurally stable heteroclinic cycles.Math. Proc. Cambridge Phil. Soc. 103 (1988), 189–192.

    MATH  MathSciNet  Google Scholar 

  42. J. Guckenheimer and P. Worfolk. Instant chaos.Nonlinearity 5 (1992), 1211–1222.

    Article  MATH  MathSciNet  Google Scholar 

  43. P. Guyard. Interaction de modes dans les problèmes de bifurcation avec symétrie sphérique. Thesis, Université de Nice, 1994.

  44. J. Hofbauer. A general cooperation theorem for hypercycles.Monatsh. Math. 91 (1991), 233–240.

    Article  MathSciNet  Google Scholar 

  45. J. Hofbauer. Heteroclinic cycles on the simplex.Proc. Int. Conf. Nonlinear Oscillations, Janos Bolyai Math. Soc., Budapest (1987).

    Google Scholar 

  46. J. Hofbauer. Heteroclinic cycles in ecological differential equations.Proc. Equadiff 8., the Czech-Slovak Conference on Differential Equations and Their Applications. (P. Brunovsky and M. Medved eds.) Tatra Mountains Mathematical Publications, Bratislava (1994), 105–116.

    Google Scholar 

  47. J. Hofbauer and K. Sigmund.The Theory of Evolution and Dynamical Systems. Camb. Univ. Press, Cambridge (1988).

    MATH  Google Scholar 

  48. A. Homburg, H. Kokubu, and M. Krupa. The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic orbit.Ergodic Theory and Dynamical Systems 14 (1994), 667–693.

    Article  MATH  MathSciNet  Google Scholar 

  49. C. Hou. Thesis, Symmetry breaking and heteroclinic cycles. University of Houston, Houston, 1995.

    Google Scholar 

  50. C. Hou and M. Golubitsky. An example of symmetry breaking to heteroclinic cycles.J. Diff. Eqs. To appear.

  51. Y. Hu, R. E. Ecke, and G. Ahlers. Time and length scales in rotating Rayleigh-Bénard convection.Phys. Rev. Lett. 74 (1995), 5040–5043.

    Article  Google Scholar 

  52. T. Hungerford.Algebra,GTM 73, Springer-Verlag, New York (1980).

    MATH  Google Scholar 

  53. J. M. Hyman and B. Nicolaenko. The Kuramoto-Sivashinsky equation: A bridge between PDE’s and dynamical systems.Physica D 18 (1986), 113–126.

    Article  MATH  MathSciNet  Google Scholar 

  54. J. M. Hyman, B. Nicolaenko, and S. Zaleski. Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces. ReportLA-UR-86-1947, LANL, Los Alamos NM (1986).

    Google Scholar 

  55. I. G. Kevrikedis, B. Nicolaenko, and J. C. Scovel. Back in the saddle again: A computer assisted study of the Kuramoto-Sivashinsky equation.SIAM J. Appl. Math. 21 (1990), 760–790.

    Article  Google Scholar 

  56. V. Kirk and M. Silber. A competition between heteroclinic cycles.Nonlinearity 7 (1994), 1605–1621.

    Article  MATH  MathSciNet  Google Scholar 

  57. G. Kirlinger. Permanence in Lotka-Volterra equations: Linked predator-prey systems.Math. Biosci. 82 (1986), 165–191.

    Article  MATH  MathSciNet  Google Scholar 

  58. S. J. Kline, W. C. Reynolds, W. C. Schraub, and P. W. Rundstadler. The structure of turbulent boundary layers.J. Fluid Mech. 30 (1990), 741–773.

    Article  Google Scholar 

  59. E. Knobloch and M. Silber. Hopf bifurcation with ℤ4 × Z4×T2 symmetry.Bifurcation and Symmetry (E. Allgower et al. eds.) ISNM 104, Birkhauser, Basel (1992), 241–252.

    Google Scholar 

  60. E. Knobloch and M. Silber. Oscillatory convection in a rotating layer.Physica D 94 (1993), 213–232.

    Article  MathSciNet  Google Scholar 

  61. M. Krupa and I. Melbourne. Asymptotic stability of heteroclinic cycles in systems with symmetry.Erg. Th. Dyn. Sys. 15 (1995), 121–147.

    MATH  MathSciNet  Google Scholar 

  62. M. Krupa and I. Melbourne. Nonasymptotically stable attractors in O(2) mode interactions. InNormal Forms and Homoclinic Chaos. (W.F. Langford and W. Nagata eds.) Fields Institute Communications, American Mathematical Society, Providence, RI (1995), Vol. 4, pp. 219–232.

    Google Scholar 

  63. M. Krupa, I. Melbourne, and A. Scheel. Stability and bifurcations of heteroclinic cycles in systems with symmetry. In preparation.

  64. R. Lauterbach and S. Maier-Paape. Heteroclinic cycles for reaction diffusion systems by forced symmetry breaking.Trans. Am. Math. Soc., submitted.

  65. R. Lauterbach, S. Maier-Paape, and Ernst Reißner. A systematic study of heteroclinic cycles in dynamical systems with broken symmetry.Proc. Roy. Soc. Edinburgh 126A (1996), 885–909.

    Google Scholar 

  66. R. Lauterbach and M. Roberts. Heteroclinic cycles in dynamical systems with broken spherical symmetry.J. Diff. Eq. 100 (1992), 22–48.

    Article  MATH  MathSciNet  Google Scholar 

  67. X. B. Lin. Using Melnikov’s method to solve Shilnikov’s problems.Proc. Roy. Soc. Edinburgh 116A (1990), 295–325.

    Google Scholar 

  68. R. M. May and W. Leonard. Nonlinear aspects of competition between three species.SIAM J. Appl. Math. 29 (1975), 243–252.

    Article  MATH  MathSciNet  Google Scholar 

  69. I. Melbourne. Intermittency as a codimension three phenomenon.Dyn. Diff. Eqs. 1 (1989), 347–367.

    Article  MATH  MathSciNet  Google Scholar 

  70. I. Melbourne. An example of a nonasymptotically stable attractor.Nonlinearity 4 (1991), 835–844.

    Article  MATH  MathSciNet  Google Scholar 

  71. I. Melbourne, P. Chossat, and M. Golubitsky. Heteroclinic cycles involving periodic solutions in mode interactions with O(2) symmetry.Proc. Roy. Soc. Edinburgh 113A (1989), 315–345.

    MathSciNet  Google Scholar 

  72. M. R. E. Proctor and C. A. Jones. The interaction of two spatially resonant patterns in thermal convection. Part 1. Exact 1:2 resonance.J. Fluid Mech. 188 (1988), 301–335.

    Article  MATH  MathSciNet  Google Scholar 

  73. G. L. dos Reis. Structural stability of equivariant vector fields.An. Acad. Brasil. Ciênc. 50 (1978), 273–176.

    Google Scholar 

  74. G. L. dos Reis. Structural stability of equivariant vector fields on two manifolds.Trans. Am. Math. Soc. 283 (1984), 633–43.

    Article  MATH  Google Scholar 

  75. J. W. Reyn. A stability criterion for separatrix polygons in the plane.Nieuw Arch. Wisk. 27 (1979), 238–254.

    MATH  MathSciNet  Google Scholar 

  76. A. M. Rucklidge and P. C. Matthews. Shearing instability in magnetoconvection.Double-Diffusive Convection (A. Brandt and H. J. S. Fernando eds.) American Geophysical Union, Washington, DC (1995), 171–184.

    Google Scholar 

  77. A. M. Rucklidge and P. C. Matthews. Analysis of the shearing instability in nonlinear analysis and magnetoconvection.Nonlinearity 9 (1996).

  78. B. Sandstede and A. Scheel. Forced symmetry breaking of homoclinic cycles.Nonlinearity 8 (1995), 333–365.

    Article  MATH  MathSciNet  Google Scholar 

  79. S. Sanghi and N. Aubry. Mode interaction models for near-wall turbulence.J. Fluid Mech. 247 (1993), 455–488.

    Article  MATH  MathSciNet  Google Scholar 

  80. B. Sandstede. Verzweigungstheorie homokliner Verdopplungen. Report No. 7, Institut für Angewandte Analysis und Stochastik, Berlin (1993).

    MATH  Google Scholar 

  81. A. Scheel. Bifurcation d’orbites périodiques à partir de cycles homoclines en présence de symétrie.Memoire de DEA. Université de Nice, Nice (1991).

    Google Scholar 

  82. A. Scheel and P. Chossat. Bifurcation d’orbites pèriodiques á partir d’un cycle homocline symètrique.C. R. Acad. Sci. Paris 314 (1992), 49–54.

    MATH  MathSciNet  Google Scholar 

  83. Z. S. She and B. Nicolaenko. Temporal intermittency and turbulence production in the Kolmogorov flow.Topological Fluid Mechanics (H. K. Moffat ed.), Cambridge University Press, Cambridge256 (1990).

    Google Scholar 

  84. M. Silber and E. Knobloch. Hopf bifurcation on a square lattice.Nonlinearity 4 (1991), 1063–1106.

    Article  MATH  MathSciNet  Google Scholar 

  85. M. Silber, H. Riecke, and L. Kramer. Symmetry-breaking Hopf bifurcation in anisotropic systems.Physica D 61 (1992), 260–272.

    Article  MATH  MathSciNet  Google Scholar 

  86. A. M. Soward. Bifurcation and stability of finite amplitude convection in a rotating layer.Physica D 14 (1985), 227–241.

    Article  MATH  MathSciNet  Google Scholar 

  87. A. Steindl. Hopf/steady-state mode interaction for a fluid conveying elastic tube with D4 symmetric support.International Series of Numerical Mathematics 104 (1992), 305–315.

    MathSciNet  Google Scholar 

  88. A. Steindl. In preparation.

  89. A. Steindl. Heteroclinic cycles in the dynamics of a fluid conveying tube. Proceedings of ICIAM/GAMM 1995. Special issues ofZeitschrift für Angewandte Mathematik und Mechanik, issue4 (Edwin Kreuzer and Oskar Mahrenholtz eds.) Academie Verlag, Berlin (1996), 529–532.

    Google Scholar 

  90. S. Sternberg. On the structure of local homeomorphisms of Euclideann-space, II.Am. J. Math. 80 (1958), 623–631.

    Article  MATH  MathSciNet  Google Scholar 

  91. E. Stone and P. Holmes. Noise induced intermittency in a model of turbulent boundary layer.Physica D 37 (1989), 20–32.

    Article  MATH  MathSciNet  Google Scholar 

  92. E. Stone and P. Holmes. Random perturbations of heteroclinic attractors,SIAM J. Appl. Math 50 (1990), 726–743.

    Article  MATH  MathSciNet  Google Scholar 

  93. E. Stone and P. Holmes. Unstable fixed points, heteroclinic cycles, and exponential tails in turbulence production.Phys. Lett. A 155 (1991), 29–41.

    Article  MathSciNet  Google Scholar 

  94. J. W. Swift. Hopf bifurcation with the symmetry of the square.Nonlinearity 1 (1988) 333–377.

    Article  MATH  MathSciNet  Google Scholar 

  95. J.W. Swift. Convection in a rotating fluid layer.Contemporary Mathematics 28, AMS (1984), 435–448.

    MathSciNet  Google Scholar 

  96. J. W. Swift and E. Barany. Chaos in the Hopf bifurcation with tetrahedral symmetry: Convection in a rotating fluid with low Prandtl number.Eur. J. Mech., B/Fluids 10 (1991), 99–104.

    MathSciNet  Google Scholar 

  97. Y. Tu and M. C. Cross. Chaotic domain structure in rotating convection.Phys. Rev. Lett. 69 (1992), 2515–2518.

    Article  Google Scholar 

  98. P. Worfolk. An equivariant, inclination-flip, heteroclinic bifurcation.Nonlinearity 9 (1996), 631–647.

    Article  MATH  MathSciNet  Google Scholar 

  99. F. Takens. Heteroclinic attractors: time averages and moduli of topological conjugacy.Bol. Soc. Bras. Mat. 25 (1994), 107–120.

    Article  MATH  MathSciNet  Google Scholar 

  100. F. Zhong and R. Ecke. Pattern dynamics and heat transport in rotating Rayleigh-Bénard convection.Chaos 2 (1992), 163–171.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Martin Golubitsky

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krupa, M. Robust heteroclinic cycles. J Nonlinear Sci 7, 129–176 (1997). https://doi.org/10.1007/BF02677976

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02677976

Key words

MSC numbers

Navigation