Skip to main content

Advertisement

Log in

Research progress on mechanism and imaging of temporal lobe injury induced by radiotherapy for head and neck cancer

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Radiotherapy (RT) is an effective treatment for head and neck cancer (HNC). Radiation-induced temporal lobe injury (TLI) is a serious complication of RT. Late symptoms of radiation-induced TLI are irreversible and manifest as memory loss, cognitive impairment, and even temporal lobe necrosis (TLN). It is currently believed that the mechanism of radiation-induced TLI involves microvascular injury, neuron and neural stem cell injury, glial cell damage, inflammation, and the production of free radicals. Significant RT-related structural changes and dose-dependent changes in gray matter (GM) and white matter (WM) volume and morphology were observed through computed tomography (CT) and magnetic resonance imaging (MRI) which were common imaging assessment tools. Diffusion tensor imaging (DTI), dispersion kurtosis imaging (DKI), susceptibility-weighted imaging (SWI), resting-state functional magnetic resonance (rs-fMRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET) can be used for early diagnosis and prognosis evaluation according to functional, molecular, and cellular processes of TLI. Early diagnosis of TLI is helpful to reduce the incidence of TLN and its related complications. This review summarizes the clinical features, mechanisms, and imaging of radiation-induced TLI in HNC patients.

Key Points

• Radiation-induced temporal lobe injury (TLI) is a clinical complication and its symptoms mainly include memory impairment, headache, and cognitive impairment.

• The mechanisms of TLI include microvascular injury, cell injury, and inflammatory and free radical injury. Significant RT-related structural changes and dose-dependent changes in TL volume and morphology were observed through CT and MRI.

• SWI, MRS, DTI, and DKI and other imaging examinations can detect anatomical and functional, molecular, and cellular changes of TLI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Ang:

Angiopoietin

Ang-2:

Angiopoietin-2

BBB:

Blood-brain barrier

CCR2:

Chemokine (C-C motif) receptor 2

CMBs:

Cerebral microbleeds

CNS:

Central nervous system

COX-2:

Cyclocyte-2

CT:

Computed tomography

CXCR4:

CXC chemokine receptor 4

D1cc :

The dose delivered to the 1-cm3 volume

DKI:

Dispersion kurtosis imaging

DTI:

Diffusion tensor imaging

ERK1/2:

Extracellular regulated protein kinases 1/2

fALFF:

Fractional amplitude of low-frequency fluctuation

GM:

Gray matter

hESC:

Human embryonic stem cells

HIT:

Heavy ion therapy

hMSC:

Human mesenchymal stem cells

HNC:

Head and neck cancer

IL:

Interleukin

IMRT:

Intensity-modulated radiation therapy

LPS:

Lipopolysaccharide

MEK1:

Mitogen-activated protein kinase kinase 1

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

NF-κB:

Nuclear factor kappa-B

NGF:

Nerve growth factor

NPC:

Nasopharyngeal carcinoma

NSCs:

Neural stem cells

P2Y6R:

Purinergic receptor P2Y6 receptor

PBT:

Proton beam therapy

PET:

Positron emission tomography

PET:

Positron emission tomography

RIBI:

Radiation-induced brain injury

ROS:

Reactive oxygen species

rs-fMRI:

Resting-state functional magnetic resonance

RT:

Radiotherapy

SDF-1:

Stromal cell-derived factor 1

SWI:

Susceptibility-weighted imaging

T1WI:

T1-weighted image

T2WI:

T2-weighted image

TL:

Temporal lobe

TLI:

Temporal lobe injury

TLN:

Temporal lobe necrosis

TNF-α:

Tumor necrosis factor-alpha

VEGF:

Vascular endothelial growth factor

VMAT:

Volumetric modulated arc therapy

WM:

White matter

References

  1. Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386. https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  2. Huang J, Kong FF, Oei RW, Zhai RP, Hu CS, Ying HM (2019) Dosimetric predictors of temporal lobe injury after intensity-modulated radiotherapy for T4 nasopharyngeal carcinoma: a competing risk study. Radiat Oncol 14:31. https://doi.org/10.1186/s13014-019-1229-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lu L, Sheng Y, Zhang G et al (2018) Temporal lobe injury patterns following intensity modulated radiotherapy in a large cohort of nasopharyngeal carcinoma patients. Oral Oncol 85:8–14. https://doi.org/10.1016/j.oraloncology.2018.07.020

    Article  PubMed  Google Scholar 

  4. Zhou X, Liu P, Wang X (2020) Temporal lobe necrosis following radiotherapy in nasopharyngeal carcinoma: new insight into the management. Front Oncol 10:593487. https://doi.org/10.3389/fonc.2020.593487

    Article  PubMed  Google Scholar 

  5. Belov OV, Batmunkh M, Incerti S, Lkhagva O (2016) Radiation damage to neuronal cells: simulating the energy deposition and water radiolysis in a small neural network. Phys Med 32:1510–1520. https://doi.org/10.1016/j.ejmp.2016.11.004

    Article  PubMed  Google Scholar 

  6. Tseng BP, Giedzinski E, Izadi A et al (2014) Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation. Antioxid Redox Signal 20:1410–1422. https://doi.org/10.1089/ars.2012.5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chong VF, Fan YF, Mukherji SK (2000) Radiation-induced temporal lobe changes: CT and MR imaging characteristics. AJR Am J Roentgenol 175:431–436. https://doi.org/10.2214/ajr.175.2.1750431

    Article  CAS  PubMed  Google Scholar 

  8. Liyan L, Si W, Qian W et al (2018) Diffusion kurtosis as an in vivo imaging marker of early radiation-induced changes in radiation-induced temporal lobe necrosis in nasopharyngeal carcinoma patients. Clin Neuroradiol 28:413–420. https://doi.org/10.1007/s00062-017-0585-9

    Article  PubMed  Google Scholar 

  9. Chen W, Qiu S, Li J et al (2015) Diffusion tensor imaging study on radiation-induced brain injury in nasopharyngeal carcinoma during and after radiotherapy. Tumori 101:487–490. https://doi.org/10.5301/tj.5000348

    Article  CAS  PubMed  Google Scholar 

  10. Wang HZ, Qiu SJ, Lv XF et al (2012) Diffusion tensor imaging and 1H-MRS study on radiation-induced brain injury after nasopharyngeal carcinoma radiotherapy. Clin Radiol 67:340–345. https://doi.org/10.1016/j.crad.2011.09.008

    Article  PubMed  Google Scholar 

  11. Co J, De Moraes MV, Katznelson R et al (2019) Hyperbaric oxygen for radiation necrosis of the brain. Can J Neurol Sci 47:1–8. https://doi.org/10.1017/cjn.2019.290

    Article  Google Scholar 

  12. Li YQ, Chen P, Jain V, Reilly RM, Wong CS (2004) Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord. Radiat Res 161:143–152. https://doi.org/10.1667/rr3117

    Article  CAS  PubMed  Google Scholar 

  13. Pena LA, Fuks Z, Kolesnick RN (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res 60:321–327

    CAS  PubMed  Google Scholar 

  14. Shen Q, Lin F, Rong X et al (2016) Temporal cerebral microbleeds are associated with radiation necrosis and cognitive dysfunction in patients treated for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 94:1113–1120. https://doi.org/10.1016/j.ijrobp.2015.11.037

    Article  PubMed  Google Scholar 

  15. Ai X, Ye Z, Yao Y et al (2020) Endothelial autophagy: an effective target for radiation-induced cerebral capillary damage. Sci Rep 10:614. https://doi.org/10.1038/s41598-019-57234-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deng Z, Huang H, Wu X, Wu M, He G, Guo J (2017) Distinct expression of various angiogenesis factors in mice brain after whole-brain irradiation by X-ray. Neurochem Res 42:625–633. https://doi.org/10.1007/s11064-016-2118-3

    Article  CAS  PubMed  Google Scholar 

  17. Lee WH, Cho HJ, Sonntag WE, Lee YW (2011) Radiation attenuates physiological angiogenesis by differential expression of VEGF, Ang-1, tie-2 and Ang-2 in rat brain. Radiat Res 176:753–760. https://doi.org/10.1667/rr2647.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nonoguchi N, Miyatake S, Fukumoto M et al (2011) The distribution of vascular endothelial growth factor-producing cells in clinical radiation necrosis of the brain: pathological consideration of their potential roles. J Neurooncol 105:423–431. https://doi.org/10.1007/s11060-011-0610-9

    Article  CAS  PubMed  Google Scholar 

  19. Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60. https://doi.org/10.1126/science.277.5322.55

    Article  CAS  PubMed  Google Scholar 

  20. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248. https://doi.org/10.1038/35025215

    Article  CAS  PubMed  Google Scholar 

  21. Wu Q, Fang Y, Zhang X et al (2020) Effect of X-rays on transcript expression of rat brain microvascular endothelial cells: role of calcium signaling in X-ray-induced endothelium damage. Biosci Rep 40. https://doi.org/10.1042/BSR20193760

  22. Wu VWC, Tam SY (2020) Radiation induced temporal lobe necrosis in nasopharyngeal cancer patients after radical external beam radiotherapy. Radiat Oncol 15:7. https://doi.org/10.1186/s13014-020-01560-0

    Article  Google Scholar 

  23. Sabirzhanov B, Makarevich O, Barrett J, Jackson IL, Faden AI, Stoica BA (2020) Down-regulation of miR-23a-3p mediates irradiation-induced neuronal apoptosis. Int J Mol Sci 21. https://doi.org/10.3390/ijms21103695

  24. Kempf SJ, Moertl S, Sepe S et al (2015) Low-dose ionizing radiation rapidly affects mitochondrial and synaptic signaling pathways in murine hippocampus and cortex. J Proteome Res 14:2055–2064. https://doi.org/10.1021/acs.jproteome.5b00114

    Article  CAS  PubMed  Google Scholar 

  25. Eriksson P, Fischer C, Stenerlow B, Fredriksson A, Sundell-Bergman S (2010) Interaction of gamma-radiation and methyl mercury during a critical phase of neonatal brain development in mice exacerbates developmental neurobehavioural effects. Neurotoxicology 31:223–229. https://doi.org/10.1016/j.neuro.2010.01.002

    Article  CAS  PubMed  Google Scholar 

  26. Parihar VK, Pasha J, Tran KK, Craver BM, Acharya MM, Limoli CL (2015) Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation. Brain Struct Funct 220:1161–1171. https://doi.org/10.1007/s00429-014-0709-9

    Article  CAS  PubMed  Google Scholar 

  27. Du Y, Zhang J, Zheng Q et al (2014) Heavy ion and X-ray irradiation alter the cytoskeleton and cytomechanics of cortical neurons. Neural Regen Res 9:1129–1137. https://doi.org/10.4103/1673-5374.135315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang TM, Shen GP, Chen MY et al (2019) Genome-wide association study of susceptibility loci for radiation-induced brain injury. J Natl Cancer Inst 111:620–628. https://doi.org/10.1093/jnci/djy150

    Article  CAS  PubMed  Google Scholar 

  29. Pereira Dias G, Hollywood R, Bevilaqua MC et al (2014) Consequences of cancer treatments on adult hippocampal neurogenesis: implications for cognitive function and depressive symptoms. Neuro Oncol 16:476–492. https://doi.org/10.1093/neuonc/not321

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang Y, Zhou K, Li T et al (2017) Inhibition of autophagy prevents irradiation-induced neural stem and progenitor cell death in the juvenile mouse brain. Cell Death Dis 8:e2694. https://doi.org/10.1038/cddis.2017.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Monje ML, Palmer T (2003) Radiation injury and neurogenesis. Curr Opin Neurol 16:129–134. https://doi.org/10.1097/01.wco.0000063772.81810.b7

    Article  PubMed  Google Scholar 

  32. Dong X, Luo M, Huang G et al (2015) Relationship between irradiation-induced neuro-inflammatory environments and impaired cognitive function in the developing brain of mice. Int J Radiat Biol 91:224–239. https://doi.org/10.3109/09553002.2014.988895

    Article  CAS  PubMed  Google Scholar 

  33. Kurita H, Kawahara N, Asai A, Ueki K, Shin M, Kirino T (2001) Radiation-induced apoptosis of oligodendrocytes in the adult rat brain. Neurol Res 23:869–874. https://doi.org/10.1179/016164101101199324

    Article  CAS  PubMed  Google Scholar 

  34. Szerlip N, Rutter C, Ram N et al (2011) Factors impacting volumetric white matter changes following whole brain radiation therapy. J Neurooncol 103:111–119. https://doi.org/10.1007/s11060-010-0358-7

    Article  PubMed  Google Scholar 

  35. Nordal RA, Wong CS (2005) Molecular targets in radiation-induced blood-brain barrier disruption. Int J Radiat Oncol Biol Phys 62:279–287. https://doi.org/10.1016/j.ijrobp.2005.01.039

    Article  CAS  PubMed  Google Scholar 

  36. Wei J, Wang B, Wang H et al (2019) Radiation-induced normal tissue damage: oxidative stress and epigenetic mechanisms. Oxidative Med Cell Longev 2019:3010342. https://doi.org/10.1155/2019/3010342

    Article  CAS  Google Scholar 

  37. Nakamura M, Yamasaki T, Ueno M et al (2019) Radiation-induced redox alteration in the mouse brain. Free Radic Biol Med 143:412–421. https://doi.org/10.1016/j.freeradbiomed.2019.08.020

    Article  CAS  PubMed  Google Scholar 

  38. Zhao W, Diz DI, Robbins ME (2007) Oxidative damage pathways in relation to normal tissue injury. Br J Radiol 80 Spec No 1:S23-31. 10.1259/bjr/18237646

  39. Belarbi K, Jopson T, Tweedie D et al (2012) TNF-alpha protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J Neuroinflammation 9:23. https://doi.org/10.1186/1742-2094-9-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rosi S, Ramirez-Amaya V, Vazdarjanova A et al (2009) Accuracy of hippocampal network activity is disrupted by neuroinflammation: rescue by memantine. Brain 132:2464–2477. https://doi.org/10.1093/brain/awp148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu L, Chung YL (2019) Tumor-infiltrating T cell receptor-beta repertoires are linked to the risk of late chemoradiation-induced temporal lobe necrosis in locally advanced nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 104:165–176. https://doi.org/10.1016/j.ijrobp.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  42. Guan W, Xie K, Fan Y et al (2020) Development and validation of a nomogram for predicting radiation-induced temporal lobe injury in nasopharyngeal carcinoma. Front Oncol 10:594494. https://doi.org/10.3389/fonc.2020.594494

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lumniczky K, Szatmari T, Safrany G (2017) Ionizing radiation-induced immune and inflammatory reactions in the brain. Front Immunol 8:517. https://doi.org/10.3389/fimmu.2017.00517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prinz M, Priller J (2010) Tickets to the brain: role of CCR2 and CX3CR1 in myeloid cell entry in the CNS. J Neuroimmunol 224:80–84. https://doi.org/10.1016/j.jneuroim.2010.05.015

    Article  CAS  PubMed  Google Scholar 

  45. Belarbi K, Jopson T, Arellano C, Fike JR, Rosi S (2013) CCR2 deficiency prevents neuronal dysfunction and cognitive impairments induced by cranial irradiation. Cancer Res 73:1201–1210. https://doi.org/10.1158/0008-5472.CAN-12-2989

    Article  CAS  PubMed  Google Scholar 

  46. Dong XR, Luo M, Fan L et al (2010) Corilagin inhibits the double strand break-triggered NF-kappaB pathway in irradiated microglial cells. Int J Mol Med 25:531–536

    CAS  PubMed  Google Scholar 

  47. Biber K, Neumann H, Inoue K, Boddeke HW (2007) Neuronal' on ' and' off ' signals control microglia. Trends Neurosci 30:596–602. https://doi.org/10.1016/j.tins.2007.08.007

    Article  CAS  PubMed  Google Scholar 

  48. Deng Z, Sui G, Rosa PM, Zhao W (2012) Radiation-induced c-Jun activation depends on MEK1-ERK1/2 signaling pathway in microglial cells. PLoS One 7:e36739. https://doi.org/10.1371/journal.pone.0036739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kalm M, Roughton K, Blomgren K (2013) Lipopolysaccharide sensitized male and female juvenile brains to ionizing radiation. Cell Death Dis 4:e962. https://doi.org/10.1038/cddis.2013.482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Behin A, Delattre JY (2004) Complications of radiation therapy on the brain and spinal cord. Semin Neurol 24:405–417. https://doi.org/10.1055/s-2004-861535

    Article  PubMed  Google Scholar 

  51. Tofilon PJ, Fike JR (2000) The radioresponse of the central nervous system: a dynamic process. Radiat Res 153:357–370. https://doi.org/10.1667/0033-7587(2000)153[0357:trotcn]2.0.co;2

    Article  CAS  PubMed  Google Scholar 

  52. Tang Y, Luo D, Rong X, Shi X, Peng Y (2012) Psychological disorders, cognitive dysfunction and quality of life in nasopharyngeal carcinoma patients with radiation-induced brain injury. PLoS One 7:e36529. https://doi.org/10.1371/journal.pone.0036529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Welsh LC, Dunlop AW, McGovern T et al (2014) Neurocognitive function after (chemo)-radiotherapy for head and neck cancer. Clin Oncol (R Coll Radiol) 26:765–775. https://doi.org/10.1016/j.clon.2014.06.014

    Article  CAS  Google Scholar 

  54. He L, Xiao J, Wei Z et al (2020) Toxicity and dosimetric analysis of nasopharyngeal carcinoma patients undergoing radiotherapy with IMRT or VMAT: a regional center ' s experience. Oral Oncol 109:104978. https://doi.org/10.1016/j.oraloncology.2020.104978

    Article  CAS  PubMed  Google Scholar 

  55. Hsiao KY, Yeh SA, Chang CC, Tsai PC, Wu JM, Gau JS (2010) Cognitive function before and after intensity-modulated radiation therapy in patients with nasopharyngeal carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 77:722–726. https://doi.org/10.1016/j.ijrobp.2009.06.080

    Article  PubMed  Google Scholar 

  56. Su SF, Huang Y, Xiao WW et al (2012) Clinical and dosimetric characteristics of temporal lobe injury following intensity modulated radiotherapy of nasopharyngeal carcinoma. Radiother Oncol 104:312–316. https://doi.org/10.1016/j.radonc.2012.06.012

    Article  PubMed  Google Scholar 

  57. Feng M, Huang Y, Fan X, Xu P, Lang J, Wang D (2018) Prognostic variables for temporal lobe injury after intensity modulated-radiotherapy of nasopharyngeal carcinoma. Cancer Med 7:557–564. https://doi.org/10.1002/cam4.1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guo Z, Han L, Yang Y et al (2018) Longitudinal brain structural alterations in patients with nasopharyngeal carcinoma early after radiotherapy. Neuroimage Clin 19:252–259. https://doi.org/10.1016/j.nicl.2018.04.019

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lin J, Lv X, Niu M et al (2017) Radiation-induced abnormal cortical thickness in patients with nasopharyngeal carcinoma after radiotherapy. Neuroimage Clin 14:610–621. https://doi.org/10.1016/j.nicl.2017.02.025

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lv XF, Zheng XL, Zhang WD et al (2014) Radiation-induced changes in normal-appearing gray matter in patients with nasopharyngeal carcinoma: a magnetic resonance imaging voxel-based morphometry study. Neuroradiology 56:423–430. https://doi.org/10.1007/s00234-014-1338-y

    Article  PubMed  Google Scholar 

  61. Lee AW, Cheng LO, Ng SH et al (1990) Magnetic resonance imaging in the clinical diagnosis of late temporal lobe necrosis following radiotherapy for nasopharyngeal carcinoma. Clin Radiol 42:24–31. https://doi.org/10.1016/s0009-9260(05)81617-4

    Article  CAS  PubMed  Google Scholar 

  62. Lee AW, Ng SH, Ho JH et al (1988) Clinical diagnosis of late temporal lobe necrosis following radiation therapy for nasopharyngeal carcinoma. Cancer 61:1535–1542. https://doi.org/10.1002/1097-0142(19880415)61:8<1535::aid-cncr2820610809>3.0.co;2-e

  63. Zhou GQ, Yu XL, Chen M et al (2013) Radiation-induced temporal lobe injury for nasopharyngeal carcinoma: a comparison of intensity-modulated radiotherapy and conventional two-dimensional radiotherapy. PLoS One 8:e67488. https://doi.org/10.1371/journal.pone.0067488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hsu YC, Wang LF, Lee KW, Ho KY, Huang CJ, Kuo WR (2005) Cerebral radionecrosis in patients with nasopharyngeal carcinoma. Kaohsiung J Med Sci 21:452–459. https://doi.org/10.1016/s1607-551x(09)70150-0

    Article  PubMed  Google Scholar 

  65. Du QH, Gan YX, Wang RS et al (2021) Half-brain delineation for prediction of radiation-induced temporal lobe injury in nasopharyngeal carcinoma receiving intensity-modulated radiotherapy. Front Oncol 11:599942. https://doi.org/10.3389/fonc.2021.599942

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zeng L, Huang SM, Tian YM et al (2015) Normal tissue complication probability model for radiation-induced temporal lobe injury after intensity-modulated radiation therapy for nasopharyngeal carcinoma. Radiology 276:243–249. https://doi.org/10.1148/radiol.14141721

    Article  PubMed  Google Scholar 

  67. Lam TC, Wong FC, Leung TW, Ng SH, Tung SY (2012) Clinical outcomes of 174 nasopharyngeal carcinoma patients with radiation-induced temporal lobe necrosis. Int J Radiat Oncol Biol Phys 82:e57–e65. https://doi.org/10.1016/j.ijrobp.2010.11.070

    Article  PubMed  Google Scholar 

  68. Tang Y, Rong X, Hu W et al (2014) Effect of edaravone on radiation-induced brain necrosis in patients with nasopharyngeal carcinoma after radiotherapy: a randomized controlled trial. J Neurooncol 120:441–447. https://doi.org/10.1007/s11060-014-1573-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abdel-Magied N, Shedid SM, Ahmed AG (2019) Mitigating effect of biotin against irradiation-induced cerebral cortical and hippocampal damage in the rat brain tissue. Environ Sci Pollut Res Int 26:13441–13452. https://doi.org/10.1007/s11356-019-04806-x

    Article  CAS  PubMed  Google Scholar 

  70. Peng Y, Lu K, Li Z et al (2014) Blockade of Kv1.3 channels ameliorates radiation-induced brain injury. Neuro Oncol 16:528–539. https://doi.org/10.1093/neuonc/not221

    Article  CAS  PubMed  Google Scholar 

  71. Jenrow KA, Brown SL, Lapanowski K, Naei H, Kolozsvary A, Kim JH (2013) Selective inhibition of microglia-mediated neuroinflammation mitigates radiation-induced cognitive impairment. Radiat Res 179:549–556. https://doi.org/10.1667/RR3026.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schnegg CI, Greene-Schloesser D, Kooshki M, Payne VS, Hsu FC, Robbins ME (2013) The PPARdelta agonist GW0742 inhibits neuroinflammation, but does not restore neurogenesis or prevent early delayed hippocampal-dependent cognitive impairment after whole-brain irradiation. Free Radic Biol Med 61:1–9. https://doi.org/10.1016/j.freeradbiomed.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  73. Zhang Y, Cheng Z, Wang C, Ma H, Meng W, Zhao Q (2016) Neuroprotective effects of kukoamine a against radiation-induced rat brain injury through inhibition of oxidative stress and neuronal apoptosis. Neurochem Res 41:2549–2558. https://doi.org/10.1007/s11064-016-1967-0

    Article  CAS  PubMed  Google Scholar 

  74. Wang X, Ying H, Zhou Z, Hu C, Eisbruch A (2011) Successful treatment of radiation-induced temporal lobe necrosis with mouse nerve growth factor. J Clin Oncol 29:e166–e168. https://doi.org/10.1200/JCO.2010.31.7081

    Article  PubMed  Google Scholar 

  75. Heo JI, Kim KI, Woo SK et al (2019) Stromal cell-derived factor 1 protects brain vascular endothelial cells from radiation-induced brain damage. Cells 8(10). https://doi.org/10.3390/cells8101230

  76. Zhuang H, Shi S, Yuan Z, Chang JY (2019) Bevacizumab treatment for radiation brain necrosis: mechanism, efficacy and issues. Mol Cancer 18:21. https://doi.org/10.1186/s12943-019-0950-1

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhang B, Lian Z, Zhong L et al (2020) Machine-learning based MRI radiomics models for early detection of radiation-induced brain injury in nasopharyngeal carcinoma. BMC Cancer 20:502. https://doi.org/10.1186/s12885-020-06957-4

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  79. Lv X, He H, Yang Y et al (2019) Radiation-induced hippocampal atrophy in patients with nasopharyngeal carcinoma early after radiotherapy: a longitudinal MR-based hippocampal subfield analysis. Brain Imaging Behav 13:1160–1171. https://doi.org/10.1007/s11682-018-9931-z

    Article  PubMed  Google Scholar 

  80. Yang Y, Lin X, Li J et al (2019) Aberrant brain activity at early delay stage post-radiotherapy as a biomarker for predicting neurocognitive dysfunction late-delayed in patients with nasopharyngeal carcinoma. Front Neurol 10:752. https://doi.org/10.3389/fneur.2019.00752

    Article  PubMed  PubMed Central  Google Scholar 

  81. Shams S, Martola J, Cavallin L et al (2015) SWI or T2*: which MRI sequence to use in the detection of cerebral microbleeds? The Karolinska Imaging Dementia Study. AJNR Am J Neuroradiol 36:1089–1095. https://doi.org/10.3174/ajnr.A4248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Haller S, Montandon ML, Lazeyras F et al (2016) Radiologic-histopathologic correlation of cerebral microbleeds using pre-mortem and post-mortem MRI. PLoS One 11:e0167743. https://doi.org/10.1371/journal.pone.0167743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Neu MA, Tanyildizi Y, Wingerter A et al (2018) Susceptibility-weighted magnetic resonance imaging of cerebrovascular sequelae after radiotherapy for pediatric brain tumors. Radiother Oncol 127:280–286. https://doi.org/10.1016/j.radonc.2018.03.010

    Article  PubMed  Google Scholar 

  84. Tanino T, Kanasaki Y, Tahara T et al (2013) Radiation-induced microbleeds after cranial irradiation: evaluation by phase-sensitive magnetic resonance imaging with 3.0 tesla. Yonago Acta Med 56:7–12

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Leng X, Fang P, Lin H et al (2017) Structural MRI research in patients with nasopharyngeal carcinoma following radiotherapy: a DTI and VBM study. Oncol Lett 14:6091–6096. https://doi.org/10.3892/ol.2017.6968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tringale KR, Nguyen TT, Karunamuni R et al (2019) Quantitative imaging biomarkers of damage to critical memory regions are associated with post-radiation therapy memory performance in brain tumor patients. Int J Radiat Oncol Biol Phys 105:773–783. https://doi.org/10.1016/j.ijrobp.2019.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  87. Viallon M, Cuvinciuc V, Delattre B et al (2015) State-of-the-art MRI techniques in neuroradiology: principles, pitfalls, and clinical applications. Neuroradiology 57:441–467. https://doi.org/10.1007/s00234-015-1500-1

    Article  PubMed  Google Scholar 

  88. Klos J, van Laar PJ, Sinnige PF et al (2019) Quantifying effects of radiotherapy-induced microvascular injury; review of established and emerging brain MRI techniques. Radiother Oncol 140:41–53. https://doi.org/10.1016/j.radonc.2019.05.020

    Article  PubMed  Google Scholar 

  89. Zhu J, Zhuo C, Qin W et al (2015) Performances of diffusion kurtosis imaging and diffusion tensor imaging in detecting white matter abnormality in schizophrenia. Neuroimage Clin 7:170–176. https://doi.org/10.1016/j.nicl.2014.12.008

    Article  PubMed  Google Scholar 

  90. Wu G, Luo SS, Balasubramanian PS et al (2020) Early stage markers of late delayed neurocognitive decline using diffusion kurtosis imaging of temporal lobe in nasopharyngeal carcinoma patients. J Cancer 11:6168–6177. https://doi.org/10.7150/jca.48759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S (2009) Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 30:367–372. https://doi.org/10.3174/ajnr.A1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ding Z, Zhang H, Lv XF et al (2018) Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction. Hum Brain Mapp 39:407–427. https://doi.org/10.1002/hbm.23852

    Article  PubMed  Google Scholar 

  93. Lo EH, DeLaPaz RL, Frankel KA et al (1991) MRI and PET of delayed heavy-ion radiation injury in the rabbit brain. Int J Radiat Oncol Biol Phys 20:689–696. https://doi.org/10.1016/0360-3016(91)90010-2

    Article  CAS  PubMed  Google Scholar 

  94. Li H, Deng L, Bai HX et al (2018) Diagnostic accuracy of amino acid and FDG-PET in differentiating brain metastasis recurrence from radionecrosis after radiotherapy: a systematic review and meta-analysis. AJNR Am J Neuroradiol 39:280–288. https://doi.org/10.3174/ajnr.A5472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Qiao Z, Zhao X, Wang K et al (2019) Utility of dynamic susceptibility contrast perfusion-weighted MR imaging and (11)C-methionine PET/CT for differentiation of tumor recurrence from radiation injury in patients with high-grade gliomas. AJNR Am J Neuroradiol 40:253–259. https://doi.org/10.3174/ajnr.A5952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lohmann P, Stoffels G, Ceccon G et al (2017) Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase (18)F-FET PET accuracy without dynamic scans. Eur Radiol 27:2916–2927. https://doi.org/10.1007/s00330-016-4638-2

    Article  PubMed  Google Scholar 

  97. Hatzoglou V, Yang TJ, Omuro A et al (2016) A prospective trial of dynamic contrast-enhanced MRI perfusion and fluorine-18 FDG PET-CT in differentiating brain tumor progression from radiation injury after cranial irradiation. Neuro Oncol 18:873–880. https://doi.org/10.1093/neuonc/nov301

    Article  CAS  PubMed  Google Scholar 

  98. Zhuo X, Huang X, Yan M et al (2019) Comparison between high-dose and low-dose intravenous methylprednisolone therapy in patients with brain necrosis after radiotherapy for nasopharyngeal carcinoma. Radiother Oncol 137:16–23. https://doi.org/10.1016/j.radonc.2019.04.015

    Article  CAS  PubMed  Google Scholar 

  99. Ishii J, Natsume A, Wakabayashi T et al (2007) The free-radical scavenger edaravone restores the differentiation of human neural precursor cells after radiation-induced oxidative stress. Neurosci Lett 423:225–230. https://doi.org/10.1016/j.neulet.2007.07.029

    Article  CAS  PubMed  Google Scholar 

  100. Li Y, Huang X, Jiang J et al (2018) Clinical variables for prediction of the therapeutic effects of bevacizumab monotherapy in nasopharyngeal carcinoma patients with radiation-induced brain necrosis. Int J Radiat Oncol Biol Phys 100:621–629. https://doi.org/10.1016/j.ijrobp.2017.11.023

    Article  CAS  PubMed  Google Scholar 

  101. Naylor AS, Bull C, Nilsson MK et al (2008) Voluntary running rescues adult hippocampal neurogenesis after irradiation of the young mouse brain. Proc Natl Acad Sci U S A 105:14632–14637. https://doi.org/10.1073/pnas.0711128105

    Article  PubMed  PubMed Central  Google Scholar 

  102. Xing S, Fan Z, Shi L, Yang Z, Bai Y (2019) Successful treatment of brain radiation necrosis resulting from triple-negative breast cancer with Endostar and short-term hyperbaric oxygen therapy: a case report. Onco Targets Ther 12:2729–2735. https://doi.org/10.2147/OTT.S190409

    Article  PubMed  PubMed Central  Google Scholar 

  103. Baulch JE, Acharya MM, Allen BD et al (2016) Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain. Proc Natl Acad Sci U S A 113:4836–4841. https://doi.org/10.1073/pnas.1521668113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sato Y, Shinjyo N, Sato M et al (2018) Grafting neural stem and progenitor cells into the hippocampus of juvenile, irradiated mice normalizes behavior deficits. Front Neurol 9:715. https://doi.org/10.3389/fneur.2018.00715

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bai SM, Wang Q, Yu XL et al (2018) Grafted neural stem cells show lesion-specific migration in radiation-injured rat brains. RSC Adv 8:5797–5805. https://doi.org/10.1039/C7RA10151A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Joo KM, Jin J, Kang BG et al (2012) Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage. PLoS One 7:e25936. https://doi.org/10.1371/journal.pone.0025936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Soria B, Martin-Montalvo A, Aguilera Y et al (2019) Human mesenchymal stem cells prevent neurological complications of radiotherapy. Front Cell Neurosci 13:204. https://doi.org/10.3389/fncel.2019.00204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.cn) for English language editing.

Funding

This work was supported by the National Natural Science Foundation of China (Grant number 81570344); National Key R & D Program of China (Grant number 2017YFC0112100), the Education Department Foundation of Jilin Province (Grant number JJKH20201036KJ); the Health and Family Planning Commission of Jilin Province Foundations (Grant numbers 2016Q034 and 2017J11); the Fundamental Research Funds for the Central Universities of Jilin University; and the Jilin Provincial Science and Technology Foundations (Grant number 20180414039GH and 20190201200JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Xin or Xin Jiang.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Xin Jiang.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Informed consent was obtained.

Ethical approval

Not applicable

Methodology

• Review

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Wang, B., Zhao, Q. et al. Research progress on mechanism and imaging of temporal lobe injury induced by radiotherapy for head and neck cancer. Eur Radiol 32, 319–330 (2022). https://doi.org/10.1007/s00330-021-08164-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-08164-6

Keywords

Navigation