Skip to main content
Log in

Neuroprotective Effects of Kukoamine a against Radiation-induced Rat Brain Injury through Inhibition of Oxidative Stress and Neuronal Apoptosis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Radiation-induced brain injury (RIBI) is a prominent side effect of radiotherapy for cranial tumors. Kukoamine A (KuA) has the ability of anti-oxidative stress and anti-apoptosis in vitro. The aim of this study was to investigate whether KuA would prevent the detrimental effect of ionizing radiation on hippocampal neurons. For this study, male Wistar rats were received either sham irradiation or whole brain irradiation (30 Gy single dose of X-rays) followed by the immediate injection of either KuA or vehicle intravenously. The dose of KuA was 5, 10 and 20 mg/kg respectively. The protective effects of KuA were assessed by Nissl staining. The levels of oxidative stress marker and antioxidants activities were assayed by kits. TUNEL staining was performed to detect the level of apoptosis in hippocampal neurons. The expression of apoptosis-related proteins as well as the brain-derived neurophic factor (BDNF) was evaluated by western blot. Whole brain irradiation led to the neuronal abnormality and it was alleviated by KuA. KuA decreased malondialdehyde (MDA) level, increased glutathione (GSH) level, superoxide dismutase (SOD) and catalase (CAT) activities, as well as alleviated neuronal apoptosis by regulating the expression of cleaved caspase-3, cytochrome C, Bax and Bcl-2. Additionally, KuA increased the expression of BDNF. These data indicate that KuA has neuroprotective effects against RIBI through inhibiting neuronal oxidative stress and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tofilon PJ, Fike JR (2000) The radioresponse of the central nervous system: a dynamic process. Radiat Res 153:357–370

    Article  CAS  PubMed  Google Scholar 

  2. Crossen JR, Garwood D, Glatstein E, Neuwelt EA (1994) Neurobehavioral sequelae of cranial irradiation in adults: a review of radiation-induced encephalopathy. J Clin Oncol 12:627–642

    CAS  PubMed  Google Scholar 

  3. Dropcho EJ (2010) Neurotoxicity of radiation therapy. Neurol Clin 28:217–234

    Article  PubMed  Google Scholar 

  4. Sasaki MS, Ejima Y, Tachibana A, Yamada T, Ishizaki K, Shimizu T et al (2002) DNA damage response pathway in radioadaptive response. Mutat Res 504:101–118

    Article  CAS  PubMed  Google Scholar 

  5. Haimovitz-Friedman A, Yang TJ, Thin TH, Verheij M (2012) Imaging radiotherapy-induced apoptosis. Radiat Res 177:467–482

    Article  CAS  PubMed  Google Scholar 

  6. Ostrau C, Hulsenbeck J, Herzog M, Schad A, Torzewski M, Lackner KJ et al (2009) Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo. Radiother Oncol 92:492–499

    Article  CAS  PubMed  Google Scholar 

  7. Watters D (1999) Molecular mechanisms of ionizing radiation-induced apoptosis. Immunol Cell Biol 77:263–271

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Chen PL, Chen CF, Jiang X, Riley DJ (2008) Never-in-mitosis related kinase 1 functions in DNA damage response and checkpoint control. Cell Cycle 7:3194–3201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Joubert V, Bourthoumieu S, Leveque P, Yardin C (2008) Apoptosis is induced by radiofrequency fields through the caspase-independent mitochondrial pathway in cortical neurons. Radiat Res 169:38–45

    Article  CAS  PubMed  Google Scholar 

  10. Zhao DY, Jacobs KM, Hallahan DE, Thotala D (2015) Silencing Egr1 attenuates radiation-induced apoptosis in normal tissues while killing cancer cells and delaying tumor growth. Mol Cancer Ther 14:2343–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yasmeen Saeed, Bingjie Xie, Jin Xu, Hailong Wang, Murtaza Hassan, Rui Wang et al (2014) Indirect effects of radiation induce apoptosis and neuroinflammation in neuronal SH-SY5Y cells. Neurochem Res 39:2334–2342

    Article  CAS  PubMed  Google Scholar 

  12. Xu P, Xu Y, Hu B, Wang J, Pan R, Murugan M et al (2015) Extracellular ATP enhances radiation-induced brain injury through microglial activation and paracrine signaling via P2 × 7 receptor. Brain Behav Immun 50:87–100

    Article  CAS  PubMed  Google Scholar 

  13. Sun AM, Li CG, Han YQ, Liu QL, Xia Q, Yuan YW (2013) X-ray irradiation promotes apoptosis of hippocampal neurons through up-regulation of Cdk5 and p25. Cancer Cell Int 13:47–54

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xin N, Li YJ, Li X, Wang X, Li Y, Zhang X et al (2012) Dragon’s blood may have radioprotective effects in radiation-induced rat brain injury. Radiat Res 178:75–85

    Article  CAS  PubMed  Google Scholar 

  15. Huo K, Sun Y, Li H, Du X, Wang X, Karlsson N et al (2012) Lithium reduced neural progenitor apoptosis in the hippocampus and ameliorated functional deficits after irradiation to the immature mouse brain. Mol Cell Neurosci 51:32–42

    Article  CAS  PubMed  Google Scholar 

  16. Hassan HA, Hafez HS, Goda MS (2013) Mentha piperita as a pivotal neuro-protective agent against gamma irradiation induced DNA fragmentation and apoptosis: mentha extract as a neuroprotective against gamma irradiation. Cytotechnology 65:145–156

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Li K, Sun R, Zhang Y, Ji J, Huang P et al (2014) Minocycline ameliorates cognitive impairment induced by whole-brain irradiation: an animal study. Radiat Oncol 9:281–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dong X, Luo M, Huang G, Zhang J, Tong F, Cheng Y et al (2015) Relationship between irradiation-induced neuro-inflammatory environments and impaired cognitive function in the developing brain of mice. Int J Radiat Biol 91:224–239

    Article  CAS  PubMed  Google Scholar 

  19. Von Sonntag C (1987) The chemical basis of radiation biology. Taylor & Francis, London

    Google Scholar 

  20. Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65:27–33

    Article  CAS  PubMed  Google Scholar 

  21. Azzam EI, Jay-Gerin JP, Pain D (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 327:48–60

    Article  CAS  PubMed  Google Scholar 

  22. Mao XW, Crapo JD, Gridley DS (2012) Mitochondrial oxidative stress-induced apoptosis and radioprotection in proton-irradiated rat retina. Radiat Res 178:118–125

    Article  CAS  PubMed  Google Scholar 

  23. Rola R, Zou Y, Huang T, Fishman K, Baure J, Rosi S et al (2007) Lack of extracellular superoxide dismutase (EC-SOD) in the microenvironment impacts radiation-induced changes in neurogenesis. Free Radic Biol Med 42:1133–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang T-T, Zou Y, Corniola R (2012) Oxidative stress and adult neurogenesis—Effects of radiation and superoxide dismutase deficiency. Semin Cell Dev Biol 23:738–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu K, Zhang C, Wu W, Zhou M, Tang Y, Peng Y (2015) Rhubarb extract has a protective role against radiation-induced brain injury and neuronal cell apoptosis. Mol Med Rep 12:2689–2694

    CAS  PubMed  Google Scholar 

  26. Hadjipavlou-Litina D, Garnelis T, Athanassopoulos CM, Papaioannou D (2009) Kukoamine A analogs with lipoxygenase inhibitory activity. J Enzyme Inhib Med Chem 24:1188–1193

    Article  CAS  PubMed  Google Scholar 

  27. Hu XL, Gao LY, Niu YX, Tian X, Wang J, Meng WH et al (2015) Neuroprotection by Kukoamine A against oxidative stress may involve N-methyl-D-aspartate receptors. Biochim Biophys Acta 1850:287–298

    Article  CAS  PubMed  Google Scholar 

  28. Ramanan S, Kooshki M, Zhao W, Hsu FC, Riddle DR, Robbins ME (2009) The PPARalpha agonist fenofibrate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. Int J Radiat Oncol 75:870–877

    Article  CAS  Google Scholar 

  29. Laack NN, Brown PD (2004) Cognitive sequelae of brain radiation in adults. Semin Oncol 31:702–713

    Article  PubMed  Google Scholar 

  30. Li J, Feng L, Xing Y, Wang Y, Du L, Xu C et al (2014) Radioprotective and antioxidant effect of resveratrol in hippocampus by activating Sirt1. Int J Mol Sci 15:5928–5939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  32. Lu SC (2009) Regulation of glutathione Synthesis. Mol Aspects Med 30:42–59

    Article  CAS  PubMed  Google Scholar 

  33. Sies H (1986) Biochemistry of Oxidative Stress. Angew Chem 25:1058–1071

    Article  Google Scholar 

  34. Zeevalk GD, Manzino L, Sonsalla PK, Bernard LP (2007) Characterization of intracellular elevation of glutathione (GSH) with glutathione monoethyl ester and GSH in brain and neuronal cultures: Relevance to Parkinson’s disease. Exp Neurol 203:512–520

    Article  CAS  PubMed  Google Scholar 

  35. Dong A, Shen J, Krause M, Akiyama H, Hackett Sf, Lai H et al (2006) Superoxide dismutase 1 protects retinal cells from oxidative damage. J Cell Physiol 208:516–526

    Article  CAS  PubMed  Google Scholar 

  36. Abou-Seif MA, El-Naggar MM, El-Far M, Ramadan M, Salah N (2003) Prevention of biochemical changes in gamma-irradiated rats by some metal complexes. Clin Chem Lab Med 41:926–933

    Article  CAS  PubMed  Google Scholar 

  37. Sezen O, Ertekin MV, Demircan B, Karslioğlu I, Erdoğan F, Koçer I, et al (2008) Vitamin E and L-carnitine, separately or in combination, in the prevention of radiation-induced brain and retinal damages. Neurosurg Rev 31:205–213

    Article  PubMed  Google Scholar 

  38. Otsuka K, Koana T, Tauchi H, Sakai K (2006) Activation of antioxidative enzymes induced by low-dose-rate whole-body gamma irradiation: adaptive response in terms of initial DNA damage. Radiat Res 166:474–478

    Article  CAS  PubMed  Google Scholar 

  39. Caceres LG, Aon Bertolino L, Saraceno GE, Zorrilla Zubilete MA, Uran SL, Capani F et al (2010) Hippocampal-related memory deficits and histological damage induced by neonatal ionizing radiation exposure. Role of oxidative status. Brain Res 1312:67–78

    Article  CAS  PubMed  Google Scholar 

  40. Zhu C, Xu F, Fukuda A, Wang X, Fukuda H, Korhonen L et al (2007) X chromosome-linked inhibitor of apoptosis protein reduces oxidative stress after cerebral irradiation or hypoxia-ischemia through up-regulation of mitochondrial antioxidants. Eur J Neurosci 26:3402–3410

    Article  PubMed  Google Scholar 

  41. Datta R, Kojima H, Yoshida K, Kufe D (1997) Caspase-3-mediated cleavage of protein kinase C theta in induction of apoptosis. J Biol Chem 272:20317–20320

    Article  CAS  PubMed  Google Scholar 

  42. Wang X (2001) The expanding role of mitochondria in apoptosis. Gene Dev 15:2922–2933

    CAS  PubMed  Google Scholar 

  43. Grant MM, Barber Vs, Griffiths HR, Griffiths HR (2005) The presence of ascorbate induces expression of brain derived neurotrophic factor in SH-SY5Y neuroblastoma cells after peroxide insult, which is associated with increased survival. Proteomics 5:534–540

    Article  CAS  PubMed  Google Scholar 

  44. Oh SB, Park HR, Jang YJ, Choi SY, Son TG, Lee J (2013) Baicalein attenuates impaired hippocampal neurogenesis and the neurocognitive deficits induced by gamma-ray radiation. Brit J Pharmacol 168:421–431

    Article  CAS  Google Scholar 

  45. Forbes ME, Paitsel M, Bourland JD, Riddle DR (2013) Systemic Effects of Fractionated, Whole-Brain Irradiation in Young Adult and Aging Rats. Radiat Res 180:326–233

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science and Technology Major Project, People’s republic of China (Project Number: 2014ZX09J14101-05C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingchun Zhao.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 343 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Cheng, Z., Wang, C. et al. Neuroprotective Effects of Kukoamine a against Radiation-induced Rat Brain Injury through Inhibition of Oxidative Stress and Neuronal Apoptosis. Neurochem Res 41, 2549–2558 (2016). https://doi.org/10.1007/s11064-016-1967-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1967-0

Keywords

Navigation