Skip to main content
Log in

Diagnostic performance of neuromelanin-sensitive magnetic resonance imaging for patients with Parkinson’s disease and factor analysis for its heterogeneity: a systematic review and meta-analysis

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine the diagnostic performance of neuromelanin-sensitive magnetic resonance imaging discriminating between patients with Parkinson’s disease and normal healthy controls and to identify factors causing heterogeneity influencing the diagnostic performance.

Methods

A systematic literature search in the Ovid-MEDLINE and EMBASE databases was performed for studies reporting the relevant topic before February 17, 2020. The pooled sensitivity and specificity values with their 95% confidence intervals were calculated using bivariate random-effects modeling. Subgroup and meta-regression analyses were also performed to determine factors influencing heterogeneity.

Results

Twelve articles including 403 patients with Parkinson’s disease and 298 control participants were included in this systematic review and meta-analysis. Neuromelanin-sensitive magnetic resonance imaging showed a pooled sensitivity of 89% (95% confidence interval, 86–92%) and a pooled specificity of 83% (95% confidence interval, 76–88%). In the subgroup and meta-regression analysis, a disease duration longer than 5 and 10 years, comparisons using measured volumes instead of signal intensities, a slice thickness in terms of magnetic resonance imaging parameters of more than 2 mm, and semi-/automated segmentation methods instead of manual segmentation improved the diagnostic performance.

Conclusion

Neuromelanin-sensitive magnetic resonance imaging had a favorable diagnostic performance in discriminating patients with Parkinson’s disease from healthy controls. To improve diagnostic accuracy, further investigations directly comparing these heterogeneity-affecting factors and optimizing these parameters are necessary.

Key Points

• Neuromelanin-sensitive MRI favorably discriminates patients with Parkinsons disease from healthy controls.

Disease duration, parameters used for comparison, magnetic resonance imaging slice thickness, and segmentation methods affected heterogeneity across the studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HC:

Normal healthy control

HSROC:

Hierarchical summary receiver operating characteristic

LC:

Locus coeruleus

NM-MRI:

Neuromelanin-sensitive MRI

PD:

Parkinson’s disease

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

QUADAS-2:

Quality Assessment of Diagnostic Accuracy Studies-2

SN:

Substantia nigra

References

  1. Fedorow H, Tribl F, Halliday G, Gerlach M, Riederer P, Double KL (2005) Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson’s disease. Prog Neurobiol 75:109–124

    CAS  PubMed  Google Scholar 

  2. Sulzer D, Zecca L (2000) Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res 1:181–195

    CAS  PubMed  Google Scholar 

  3. Mann DM, Yates PO (1983) Pathological basis for neurotransmitter changes in Parkinson’s disease. Neuropathol Appl Neurobiol 9:3–19

    CAS  PubMed  Google Scholar 

  4. Nakamura K, Sugaya K (2014) Neuromelanin-sensitive magnetic resonance imaging: a promising technique for depicting tissue characteristics containing neuromelanin. Neural Regen Res 9:759–760

    PubMed  PubMed Central  Google Scholar 

  5. Sasaki M, Shibata E, Tohyama K et al (2006) Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. Neuroreport 17:1215–1218

    PubMed  Google Scholar 

  6. Wang X, Zhang Y, Zhu C et al (2019) The diagnostic value of SNpc using NM-MRI in Parkinson’s disease: meta-analysis. Neurol Sci. https://doi.org/10.1007/s10072-019-04014-y

  7. Castellanos G, Fernandez-Seara MA, Lorenzo-Betancor O et al (2015) Automated neuromelanin imaging as a diagnostic biomarker for Parkinson’s disease. Mov Disord 30:945–952

    PubMed  Google Scholar 

  8. Fabbri M, Reimao S, Carvalho M et al (2017) Substantia nigra neuromelanin as an imaging biomarker of disease progression in Parkinson’s disease. J Parkinsons Dis 7:491–501

    CAS  PubMed  Google Scholar 

  9. Isaias IU, Trujillo P, Summers P et al (2016) Neuromelanin imaging and dopaminergic loss in Parkinson’s disease. Front Aging Neurosci 8:196

    PubMed  PubMed Central  Google Scholar 

  10. Kawaguchi H, Shimada H, Kodaka F et al (2016) Principal component analysis of multimodal neuromelanin MRI and dopamine transporter PET data provides a specific metric for the nigral dopaminergic neuronal density. PLoS One 11:e0151191

    PubMed  PubMed Central  Google Scholar 

  11. Le Berre A, Kamagata K, Otsuka Y et al (2019) Convolutional neural network-based segmentation can help in assessing the substantia nigra in neuromelanin MRI. Neuroradiology. https://doi.org/10.1007/s00234-019-02279-w

  12. Ogisu K, Kudo K, Sasaki M et al (2013) 3D neuromelanin-sensitive magnetic resonance imaging with semi-automated volume measurement of the substantia nigra pars compacta for diagnosis of Parkinson’s disease. Neuroradiology 55:719–724

    PubMed  Google Scholar 

  13. Ohtsuka C, Sasaki M, Konno K et al (2013) Changes in substantia nigra and locus coeruleus in patients with early-stage Parkinson’s disease using neuromelanin-sensitive MR imaging. Neurosci Lett 541:93–98

    CAS  PubMed  Google Scholar 

  14. Prasad S, Stezin A, Lenka A et al (2018) Three-dimensional neuromelanin-sensitive magnetic resonance imaging of the substantia nigra in Parkinson’s disease. Eur J Neurol 25:680–686

    CAS  PubMed  Google Scholar 

  15. Pyatigorskaya N, Magnin B, Mongin M et al (2018) Comparative study of MRI biomarkers in the substantia nigra to discriminate idiopathic Parkinson disease. AJNR Am J Neuroradiol 39:1460–1467

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schwarz ST, Xing Y, Tomar P, Bajaj N, Auer DP (2017) In vivo assessment of brainstem depigmentation in Parkinson disease: potential as a severity marker for multicenter studies. Radiology 283:789–798

    PubMed  Google Scholar 

  17. Takahashi H, Watanabe Y, Tanaka H et al (2018) Comprehensive MRI quantification of the substantia nigra pars compacta in Parkinson’s disease. Eur J Radiol 109:48–56

    CAS  PubMed  Google Scholar 

  18. Zupan G, Suput D, Pirtosek Z, Vovk A (2019) Semi-automatic signature-based segmentation method for quantification of neuromelanin in substantia nigra. Brain Sci:9

  19. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151:W65–W94

    PubMed  Google Scholar 

  20. Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536

    PubMed  Google Scholar 

  21. Suh CH, Park SH (2016) Successful publication of systematic review and meta-analysis of studies evaluating diagnostic test accuracy. Korean J Radiol 17:5–6

    PubMed  PubMed Central  Google Scholar 

  22. Kim KW, Lee J, Choi SH, Huh J, Park SH (2015) Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: a practical review for clinical researchers-part I. general guidance and tips. Korean J Radiol 16:1175–1187

    PubMed  PubMed Central  Google Scholar 

  23. Lee J, Kim KW, Choi SH, Huh J, Park SH (2015) Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: a practical review for clinical researchers-part II. Statistical methods of meta-analysis. Korean J Radiol 16:1188–1196

    PubMed  PubMed Central  Google Scholar 

  24. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH (2005) Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 58:982–990

    PubMed  Google Scholar 

  25. Rutter CM, Gatsonis CA (2001) A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Stat Med 20:2865–2884

    CAS  PubMed  Google Scholar 

  26. Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893

    PubMed  Google Scholar 

  27. Hoaglin DC (2016) Misunderstandings about Q and ‘Cochran's Q test’ in meta-analysis. Stat Med 35:485–495

    PubMed  Google Scholar 

  28. Deville WL, Buntinx F, Bouter LM et al (2002) Conducting systematic reviews of diagnostic studies: didactic guidelines. BMC Med Res Methodol 2:9

    PubMed  PubMed Central  Google Scholar 

  29. Cassidy CM, Zucca FA, Girgis RR et al (2019) Neuromelanin-sensitive MRI as a noninvasive proxy measure of dopamine function in the human brain. Proc Natl Acad Sci U S A 116:5108–5117

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kashihara K, Shinya T, Higaki F (2011) Neuromelanin magnetic resonance imaging of nigral volume loss in patients with Parkinson’s disease. J Clin Neurosci 18:1093–1096

    PubMed  Google Scholar 

  31. Kuya K, Ogawa T, Shinohara Y et al (2018) Evaluation of Parkinson’s disease by neuromelanin-sensitive magnetic resonance imaging and (123)I-FP-CIT SPECT. Acta Radiol 59:593–598

    PubMed  Google Scholar 

  32. Kuya K, Shinohara Y, Miyoshi F, Fujii S, Tanabe Y, Ogawa T (2016) Correlation between neuromelanin-sensitive MR imaging and (123)I-FP-CIT SPECT in patients with parkinsonism. Neuroradiology 58:351–356

    PubMed  Google Scholar 

  33. Langley J, Huddleston DE, Sedlacik J, Boelmans K, Hu XP (2017) Parkinson’s disease-related increase of T2*-weighted hypointensity in substantia nigra pars compacta. Mov Disord 32:441–449

    CAS  PubMed  Google Scholar 

  34. Matsuura K, Maeda M, Yata K et al (2013) Neuromelanin magnetic resonance imaging in Parkinson’s disease and multiple system atrophy. Eur Neurol 70:70–77

    CAS  PubMed  Google Scholar 

  35. Moon WJ, Park JY, Yun WS et al (2016) A comparison of substantia nigra T1 hyperintensity in Parkinson’s disease dementia, Alzheimer’s disease and age-matched controls: volumetric analysis of neuromelanin imaging. Korean J Radiol 17:633–640

    PubMed  PubMed Central  Google Scholar 

  36. Hatano T, Okuzumi A, Kamagata K et al (2017) Neuromelanin MRI is useful for monitoring motor complications in Parkinson’s and PARK2 disease. J Neural Transm (Vienna) 124:407–415

    CAS  Google Scholar 

  37. Matsusue E, Fujihara Y, Tanaka K et al (2019) The utility of the combined use of (123)I-FP-CIT SPECT and neuromelanin MRI in differentiating Parkinson’s disease from other parkinsonian syndromes. Acta Radiol 60:230–238

    PubMed  Google Scholar 

  38. Ohtsuka C, Sasaki M, Konno K et al (2014) Differentiation of early-stage parkinsonisms using neuromelanin-sensitive magnetic resonance imaging. Parkinsonism Relat Disord 20:755–760

    PubMed  Google Scholar 

  39. Shinde S, Prasad S, Saboo Y et al (2019) Predictive markers for Parkinson’s disease using deep neural nets on neuromelanin sensitive MRI. Neuroimage Clin 22:101748

    PubMed  PubMed Central  Google Scholar 

  40. Wang J, Huang Z, Li Y et al (2019) Neuromelanin-sensitive MRI of the substantia nigra: an imaging biomarker to differentiate essential tremor from tremor-dominant Parkinson’s disease. Parkinsonism Relat Disord 58:3–8

    PubMed  Google Scholar 

  41. Xiang Y, Gong T, Wu J et al (2017) Subtypes evaluation of motor dysfunction in Parkinson’s disease using neuromelanin-sensitive magnetic resonance imaging. Neurosci Lett 638:145–150

    CAS  PubMed  Google Scholar 

  42. Reimao S, Pita Lobo P, Neutel D et al (2015) Substantia nigra neuromelanin magnetic resonance imaging in de novo Parkinson’s disease patients. Eur J Neurol 22:540–546

    CAS  PubMed  Google Scholar 

  43. Reimao S, Pita Lobo P, Neutel D et al (2015) Substantia nigra neuromelanin-MR imaging differentiates essential tremor from Parkinson’s disease. Mov Disord 30:953–959

    PubMed  Google Scholar 

  44. Reimao S, Pita Lobo P, Neutel D et al (2015) Quantitative analysis versus visual assessment of neuromelanin MR imaging for the diagnosis of Parkinson’s disease. J Parkinsons Dis 5:561–567

    CAS  PubMed  Google Scholar 

  45. Takahashi H, Watanabe Y, Tanaka H et al (2018) Quantifying changes in nigrosomes using quantitative susceptibility mapping and neuromelanin imaging for the diagnosis of early-stage Parkinson’s disease. Br J Radiol 91:20180037

    PubMed  PubMed Central  Google Scholar 

  46. Taniguchi D, Hatano T, Kamagata K et al (2018) Neuromelanin imaging and midbrain volumetry in progressive supranuclear palsy and Parkinson’s disease. Mov Disord 33:1488–1492

    CAS  PubMed  Google Scholar 

  47. Jin L, Wang J, Wang C et al (2019) Combined visualization of nigrosome-1 and neuromelanin in the substantia nigra using 3T MRI for the differential diagnosis of essential tremor and de novo Parkinson’s disease. Front Neurol 10:100

    PubMed  PubMed Central  Google Scholar 

  48. Sommerauer M, Fedorova TD, Hansen AK et al (2018) Evaluation of the noradrenergic system in Parkinson’s disease: an 11C-MeNER PET and neuromelanin MRI study. Brain 141:496–504

    PubMed  Google Scholar 

  49. Tanaka M, Aihara Y, Ikeda S, Aihara Y (2011) Neuromelanin-related contrast in the substantia nigra semiquantitatively evaluated by magnetic resonance imaging at 3T: comparison between normal aging and Parkinson disease. Rinsho Shinkeigaku 51:14–20

    PubMed  Google Scholar 

  50. Takahashi H, Watanabe Y, Tanaka H et al (2019) Quantifying the severity of Parkinson disease by use of dopaminergic neuroimaging. AJR Am J Roentgenol. https://doi.org/10.2214/ajr.18.20655:1-6

  51. Ehrminger M, Latimier A, Pyatigorskaya N et al (2016) The coeruleus/subcoeruleus complex in idiopathic rapid eye movement sleep behaviour disorder. Brain 139:1180–1188

    PubMed  Google Scholar 

  52. García-Lorenzo D, Longo-Dos Santos C, Ewenczyk C et al (2013) The coeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in Parkinson's disease. Brain 136:2120–2129

    PubMed  PubMed Central  Google Scholar 

  53. Ogura A, Maeda F, Miyai A, Kikumoto R (2005) Effects of slice thickness and matrix size on MRI for signal detection. Nihon Hoshasen Gijutsu Gakkai Zasshi 61:1140–1143

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT; No. 2019R1F1A1063771) and by the SNUBH Research Fund (Grant No. 09-2019-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Jung Bae.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Yun Jung Bae.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors (Se Jin Cho) has significant statistical expertise.

Informed consent

Written informed consent was not required for this study because this article is systematic review and meta-analysis.

Ethical approval

Institutional Review Board approval was not required because this article is systematic review and meta-analysis.

Methodology

• Systematic review

• Meta-analysis

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S.J., Bae, Y.J., Kim, JM. et al. Diagnostic performance of neuromelanin-sensitive magnetic resonance imaging for patients with Parkinson’s disease and factor analysis for its heterogeneity: a systematic review and meta-analysis. Eur Radiol 31, 1268–1280 (2021). https://doi.org/10.1007/s00330-020-07240-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-020-07240-7

Keywords

Navigation