Skip to main content

Advertisement

Log in

Iron-sensitive magnetic resonance imaging in Parkinson’s disease: a systematic review and meta-analysis

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Objective

To evaluate the diagnostic performance of iron-sensitive sequences targeting the substantia nigra for distinguishing patients with Parkinson’s disease from control participants and to identify factors causing heterogeneity.

Methods

A systematic literature search in the Ovid-MEDLINE and EMBASE databases was performed for studies reporting the relevant topic before March 6, 2020. The pooled sensitivity and specificity values with their 95% confidence intervals were calculated using bivariate random-effects modeling. Subgroup and meta-regression analyses were also performed to determine factors influencing heterogeneity affecting the diagnostic performance among the clinical, MRI, and analytic characteristics.

Results

A total of 22 articles including 1126 patients with Parkinson’s disease and 933 control participants were enrolled in this systematic review and meta-analysis. Of those, 12 studies used objective analyses of quantitative susceptibility measurements, and 10 visually assessed the nigrosome-1 in subjective analyses. Iron-sensitive nigral magnetic resonance imaging showed a pooled sensitivity of 92% (95% confidence interval 88–95%) and a pooled specificity of 90% (95% confidence interval 81–95%). According to subgroup and meta-regression analyses, a longer mean disease duration in patients with Parkinson’s disease (≥ 5 years), subjective analysis, a smaller size of pixel (< 0.6 mm2), a larger flip angle (> 15°), a smaller slice thickness (≤ 1 mm), and specific targeting of the substantia nigra pars compacta improved the diagnostic performance.

Conclusion

Iron-sensitive nigral magnetic resonance imaging had a favorable diagnostic performance in discriminating patients with Parkinson’s disease from control participants. Subjective analytic methods remain superior to objective approaches. Further improvements of the spatial resolution and contrast-to-noise ratio to specifically target the nigrosome-1 with objective analytic methods will be needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Yes (published data).

Code availability

Yes (statistical software: STATA 16MP).

References

  1. Azuma M, Hirai T, Yamada K, Yamashita S, Ando Y, Tateishi M, Iryo Y, Yoneda T, Kitajima M, Wang Y, Yamashita Y (2016) Lateral asymmetry and spatial difference of iron deposition in the substantia Nigra of patients with Parkinson disease measured with quantitative susceptibility mapping. AJNR Am J Neuroradiol 37:782–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bae YJ, Kim JM, Kim E, Lee KM, Kang SY, Park HS, Kim KJ, Kim YE, Oh ES, Yun JY, Kim JS, Jeong HJ, Jeon B, Kim SE (2016) Loss of nigral hyperintensity on 3 tesla MRI of Parkinsonism: comparison with (123) I-FP-CIT SPECT. Mov Disord 31:684–692

    Article  CAS  PubMed  Google Scholar 

  3. Barbosa JH, Santos AC, Tumas V, Liu M, Zheng W, Haacke EM, Salmon CE (2015) Quantifying brain iron deposition in patients with Parkinson’s disease using quantitative susceptibility mapping, R2 and R2. Magn Reson Imaging 33:559–565

    Article  CAS  PubMed  Google Scholar 

  4. Calloni SF, Conte G, Sbaraini S, Cilia R, Contarino VE, Avignone S, Sacilotto G, Pezzoli G, Triulzi FM, Scola E (2018) Multiparametric MR imaging of Parkinsonisms at 3 tesla: its role in the differentiation of idiopathic Parkinson’s disease versus atypical Parkinsonian disorders. Eur J Radiol 109:95–100

    Article  CAS  PubMed  Google Scholar 

  5. Chen XQ, Niu JP, Peng RQ, Song YH, Xu N, Zhang YW (2019) The early diagnosis of Parkinson’s disease through combined biomarkers. Acta Neurol Scand 140:268–273

    Article  CAS  PubMed  Google Scholar 

  6. Cheng Z, He N, Huang P, Li Y, Tang R, Sethi SK, Ghassaban K, Yerramsetty KK, Palutla VK, Chen S, Yan F, Haacke EM (2020) Imaging the Nigrosome 1 in the substantia nigra using susceptibility weighted imaging and quantitative susceptibility mapping: an application to Parkinson’s disease. Neuroimage Clin 25:102103

    Article  PubMed  Google Scholar 

  7. Cheng Z, Zhang J, He N, Li Y, Wen Y, Xu H, Tang R, Jin Z, Mark Haacke E, Yan F, Qian D (2019) Radiomic features of the nigrosome-1 region of the substantia nigra: using quantitative susceptibility mapping to assist the diagnosis of idiopathic Parkinson’s disease. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2019.00167

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cosottini M, Frosini D, Pesaresi I, Costagli M, Biagi L, Ceravolo R, Bonuccelli U, Tosetti M (2014) MR imaging of the substantia nigra at 7 T enables diagnosis of Parkinson disease. Radiology 271:831–838

    Article  PubMed  Google Scholar 

  9. Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893

    Article  PubMed  Google Scholar 

  10. Deville WL, Buntinx F, Bouter LM, Montori VM, de Vet HC, van der Windt DA, Bezemer PD (2002) Conducting systematic reviews of diagnostic studies: didactic guidelines. BMC Med Res Methodol 2:9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dimov AV, Gupta A, Kopell BH, Wang Y (2018) High-resolution QSM for functional and structural depiction of subthalamic nuclei in DBS presurgical mapping. J Neurosurg 131:360–367

    Article  PubMed  Google Scholar 

  12. Du G, Liu T, Lewis MM, Kong L, Wang Y, Connor J, Mailman RB, Huang X (2016) Quantitative susceptibility mapping of the midbrain in Parkinson’s disease. Mov Disord 31:317–324

    Article  PubMed  Google Scholar 

  13. Gao P, Zhou PY, Wang PQ, Zhang GB, Liu JZ, Xu F, Yang F, Wu XX, Li G (2016) Universality analysis of the existence of substantia nigra “swallow tail” appearance of non-Parkinson patients in 3T SWI. Eur Rev Med Pharmacol Sci 20:1307–1314

    CAS  PubMed  Google Scholar 

  14. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30:19–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hetherington HP, Pan JW, Twieg D, Noa PJ, Kuzniecky R, Pohost GM (1994) High-resolution MR imaging of the brain: Neuro imaging at 4.1 tesla. Medicamundi 39:38–41

    Google Scholar 

  16. Hoaglin DC (2016) Misunderstandings about Q and “Cochran’s Q test” in meta-analysis. Stat Med 35:485–495

    Article  PubMed  Google Scholar 

  17. Kim EY, Sung YH, Shin HG, Noh Y, Nam Y, Lee J (2018) Diagnosis of early-stage idiopathic Parkinson’s disease using high-resolution quantitative susceptibility mapping combined with histogram analysis in the substantia Nigra at 3 T. J Clin Neurol 14:90–97

    Article  PubMed  Google Scholar 

  18. Kim KW, Lee J, Choi SH, Huh J, Park SH (2015) Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: a practical review for clinical researchers-part I. general guidance and tips. Korean J Radiol 16:1175–1187

    Article  PubMed  PubMed Central  Google Scholar 

  19. Langley J, He N, Huddleston DE, Chen S, Yan F, Crosson B, Factor S, Hu X (2019) Reproducible detection of nigral iron deposition in 2 Parkinson’s disease cohorts. Mov Disord 34:416–419

    Article  CAS  PubMed  Google Scholar 

  20. Lee J, Kim KW, Choi SH, Huh J, Park SH (2015) Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: a practical review for clinical researchers-part II. statistical methods of meta-analysis. Korean J Radiol 16:1188–1196

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lefranc M, Derrey S, Merle P, Tir M, Constans JM, Montpellier D, Macron JM, Le Gars D, Peltier J, Baledentt O, Krystkowiak P (2014) High-resolution 3-dimensional T2*-weighted angiography (HR 3-D SWAN): an optimized 3-T magnetic resonance imaging sequence for targeting the subthalamic nucleus. Neurosurgery 74:615–626 (discussion 627)

    Article  PubMed  Google Scholar 

  22. Li G, Zhai G, Zhao X, An H, Spincemaille P, Gillen KM, Ku Y, Wang Y, Huang D, Li J (2019) 3D texture analyses within the substantia nigra of Parkinson’s disease patients on quantitative susceptibility maps and R2( *) maps. Neuroimage 188:465–472

    Article  PubMed  Google Scholar 

  23. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151:W65-94

    Article  PubMed  Google Scholar 

  24. Lotfipour AK, Wharton S, Schwarz ST, Gontu V, Schafer A, Peters AM, Bowtell RW, Auer DP, Gowland PA, Bajaj NP (2012) High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson’s disease. J Magn Reson Imaging 35:48–55

    Article  PubMed  Google Scholar 

  25. Mahlknecht P, Krismer F, Poewe W, Seppi K (2017) Meta-analysis of dorsolateral nigral hyperintensity on magnetic resonance imaging as a marker for Parkinson’s disease. Mov Disord 32:619–623

    Article  CAS  PubMed  Google Scholar 

  26. Noh Y, Sung YH, Lee J, Kim EY (2015) Nigrosome 1 detection at 3T MRI for the diagnosis of early-stage idiopathic Parkinson disease: assessment of diagnostic accuracy and agreement on imaging asymmetry and clinical laterality. AJNR Am J Neuroradiol 36:2010–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pyatigorskaya N, Magnin B, Mongin M, Yahia-Cherif L, Valabregue R, Arnaldi D, Ewenczyk C, Poupon C, Vidailhet M, Lehericy S (2018) Comparative study of MRI biomarkers in the substantia nigra to discriminate idiopathic Parkinson disease. AJNR Am J Neuroradiol 39:1460–1467

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Reiter E, Mueller C, Pinter B, Krismer F, Scherfler C, Esterhammer R, Kremser C, Schocke M, Wenning GK, Poewe W, Seppi K (2015) Dorsolateral nigral hyperintensity on 3.0T susceptibility-weighted imaging in neurodegenerative Parkinsonism. Mov Disord 30:1068–1076

    Article  CAS  PubMed  Google Scholar 

  29. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH (2005) Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 58:982–990

    Article  PubMed  Google Scholar 

  30. Rutter CM, Gatsonis CA (2001) A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Stat Med 20:2865–2884

    Article  CAS  PubMed  Google Scholar 

  31. Schwarz ST, Afzal M, Morgan PS, Bajaj N, Gowland PA, Auer DP (2014) The “swallow tail” appearance of the healthy nigrosome—a new accurate test of Parkinson’s disease: a case-control and retrospective cross-sectional MRI study at 3T. PLoS ONE 9:e93814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Schwarz ST, Mougin O, Xing Y, Blazejewska A, Bajaj N, Auer DP, Gowland P (2018) Parkinson’s disease related signal change in the nigrosomes 1–5 and the substantia nigra using T2* weighted 7T MRI. Neuroimage Clin 19:683–689

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shahmaei V, Faeghi F, Mohammdbeigi A, Hashemi H, Ashrafi F (2019) Evaluation of iron deposition in brain basal ganglia of patients with Parkinson’s disease using quantitative susceptibility mapping. Eur J Radiol Open 6:169–174

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sjostrom H, Granberg T, Westman E, Svenningsson P (2017) Quantitative susceptibility mapping differentiates between parkinsonian disorders. Parkinsonism Relat Disord 44:51–57

    Article  PubMed  Google Scholar 

  35. Standring S, Borley NR (2008) Gray’s anatomy: the anatomical basis of clinical practice. Churchill Livingstone/Elsevier, London

    Google Scholar 

  36. Stezin A, Naduthota RM, Botta R, Varadharajan S, Lenka A, Saini J, Yadav R, Pal PK (2018) Clinical utility of visualisation of nigrosome-1 in patients with Parkinson’s disease. Eur Radiol 28:718–726

    Article  PubMed  Google Scholar 

  37. Sugiyama A, Sato N, Kimura Y, Ota M, Maekawa T, Sone D, Enokizono M, Murata M, Matsuda H, Kuwabara S (2018) MR findings in the substantia nigra on phase difference enhanced imaging in neurodegenerative parkinsonism. Parkinsonism Relat Disord 48:10–16

    Article  PubMed  Google Scholar 

  38. Suh CH, Park SH (2016) Successful publication of systematic review and meta-analysis of studies evaluating diagnostic test accuracy. Korean J Radiol 17:5–6

    Article  PubMed  PubMed Central  Google Scholar 

  39. Takahashi H, Watanabe Y, Tanaka H, Mihara M, Mochizuki H, Takahashi K, Yamamoto K, Liu T, Wang Y, Tomiyama N (2018) Comprehensive MRI quantification of the substantia nigra pars compacta in Parkinson’s disease. Eur J Radiol 109:48–56

    Article  CAS  PubMed  Google Scholar 

  40. Trujillo P, Smith AK, Summers PE, Mainardi LM, Cerutti S, Smith SA, Costa A (2015) High-resolution quantitative imaging of the substantia nigra. In: Conf proc IEEE eng med biol soc, pp 5428–5431

  41. Van Reeth E, Tham IW, Tan CH, Poh CL (2012) Super-resolution in magnetic resonance imaging: a review. Concepts Magn Resonan Part A 40:306–325

    Article  Google Scholar 

  42. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536

    Article  PubMed  Google Scholar 

  43. Zecca L, Casella L, Albertini A, Bellei C, Zucca FA, Engelen M, Zadlo A, Szewczyk G, Zareba M, Sarna T (2008) Neuromelanin can protect against iron-mediated oxidative damage in system modeling iron overload of brain aging and Parkinson’s disease. J Neurochem 106:1866–1875

    CAS  PubMed  Google Scholar 

  44. Zhong Z, Merkitch D, Karaman MM, Zhang J, Sui Y, Goldman JG, Zhou XJ (2019) High-spatial-resolution diffusion MRI in Parkinson disease: lateral asymmetry of the substantia nigra. Radiology 291:149–157

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.co.kr) for English language editing.

Funding

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIT; No. 2019R1F1A1063771) and by the SNUBH Research Fund (Grant No. 09-2019-003).

Author information

Authors and Affiliations

Authors

Contributions

SJC and YJB contributed to the conception and design of the study. SJC, YJB, and HJK contributed to the acquisition and analysis of the data. SJC, YJB, JMK, HJK, SHB, LS, BSC, CJ, and JHK drafted significant portions of the manuscript or the figures.

Corresponding author

Correspondence to Yun Jung Bae.

Ethics declarations

Ethics approval

Waived due to systematic review and meta-analysis.

Consent to participate

Waived due to systematic review and meta-analysis.

Consent for publication

Waived due to systematic review and meta-analysis.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S.J., Bae, Y.J., Kim, JM. et al. Iron-sensitive magnetic resonance imaging in Parkinson’s disease: a systematic review and meta-analysis. J Neurol 268, 4721–4736 (2021). https://doi.org/10.1007/s00415-021-10582-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10582-x

Keywords

Navigation