Skip to main content
Log in

Benefits of contrast-enhanced SWI in patients with glioblastoma multiforme

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Introduction

SWI can help to identify high-grade gliomas (HGG). The objective of this study was to analyse SWI and CE-SWI characteristics, i.e. the relationship between contrast-induced phase shifts (CIPS) and intratumoral susceptibility signals (ITSS) and their association with tumour volume in patients with glioblastoma multiforme (GBM).

Materials and methods

MRI studies of 29 patients were performed to evaluate distinct susceptibility signals comparing SWI and CE-SWI characteristics. The relationship between these susceptibility signals and CE-T1w tumour volume was analysed by using Spearman’s rank correlation coefficient and Kruskal-Wallis-test. Tumour biopsies of different susceptibility signals were performed in one patient.

Results

Comparison of SWI and CE-SWI demonstrated different susceptibility signals. Susceptibility signals visible on SWI images are consistent with ITSS; those only seen on CE-SWI were identified as CIPS. Correlation with CE-T1w tumour volume revealed that CIPS were especially present in small or medium-sized GBM (Spearman’s rho r = 0.843, P < 0.001). Histology identified the area with CIPS as the tumour invasion zone, while the area with ITSS represented micro-haemorrhage, highly pathological vessels and necrosis.

Conclusion

CE-SWI adds information to the evaluation of GBM before therapy. It might have the potential to non-invasively identify the tumour invasion zone as demonstrated by biopsies in one case.

Key Points

MRI is used to help differentiate between low- and high-grade gliomas.

Contrast-enhanced susceptibility-weighted MRI (CE-SWI) helps to identify patients with glioblastoma multiforme.

CE-SWI delineates the susceptibility signal (CIPS and ITSS) more than the native SWI.

CE-SWI might have the potential to non-invasively identify the tumour invasion zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CE-SWI:

Contrast-enhanced susceptibility weighted imaging

FLAIR:

Fluid-attenuated inversion recovery pulse sequence

HGG:

High-grade glioma

ITSS:

Intratumoral susceptibility signals

LGG:

Low-grade glioma

MRI:

Magnetic resonance imaging

CIPS:

Contrast-induced phase shifts

SWI:

Susceptibility-weighted imaging

CE-T1 WI:

Contrast-enhanced T1-weighted imaging

References

  1. Rauscher A, Sedlacik J, Deistung A, Mentzel HJ, Reichenbach JR (2006) Susceptibility weighted imaging: data acquisition, image reconstruction and clinical applications. Z Med Phys 16:240–250

    PubMed  Google Scholar 

  2. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30:19–30

    Article  PubMed  CAS  Google Scholar 

  3. Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618

    Article  PubMed  Google Scholar 

  4. Barnes SR, Haacke EM (2009) Susceptibility-weighted imaging: clinical angiographic applications. Magn Reson Imaging Clin N Am 17:47–61

    Article  PubMed  Google Scholar 

  5. Haacke EM, DelProposto ZS, Chaturvedi S et al (2007) Imaging cerebral amyloid angiopathy with susceptibility-weighted imaging. AJNR Am J Neuroradiol 28:316–317

    PubMed  CAS  Google Scholar 

  6. Mittal S, Wu Z, Neelavalli J, Haacke EM (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 30:232–252

    Article  PubMed  CAS  Google Scholar 

  7. Sehgal V, Delproposto Z, Haacke EM et al (2005) Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging 22:439–450

    Article  PubMed  Google Scholar 

  8. El-Koussy M, Schenk P, Kiefer C et al (2012) Susceptibility-weighted imaging of the brain: does gadolinium administration matter? Eur J Radiol 81:272–276

    Article  PubMed  Google Scholar 

  9. Sehgal V, Delproposto Z, Haddar D et al (2006) Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging 24:41–51

    Article  PubMed  Google Scholar 

  10. Kim HS, Jahng GH, Ryu CW, Kim SY (2009) Added value and diagnostic performance of intratumoral susceptibility signals in the differential diagnosis of solitary enhancing brain lesions: preliminary study. AJNR Am J Neuroradiol 30:1574–1579

    Article  PubMed  CAS  Google Scholar 

  11. Li C, Ai B, Li Y, Qi H, Wu L (2009) Susceptibility-weighted imaging in grading brain astrocytomas. Eur J Radiol 75:e81–e85

    Article  PubMed  Google Scholar 

  12. Park MJ, Kim HS, Jahng GH, Ryu CW, Park SM, Kim SY (2009) Semiquantitative assessment of intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas: comparison with MR perfusion imaging. AJNR Am J Neuroradiol 30:1402–1408

    Article  PubMed  CAS  Google Scholar 

  13. Pinker K, Noebauer-Huhmann IM, Stavrou I et al (2007) High-resolution contrast-enhanced, susceptibility-weighted MR imaging at 3T in patients with brain tumors: correlation with positron-emission tomography and histopathologic findings. AJNR Am J Neuroradiol 28:1280–1286

    Article  PubMed  CAS  Google Scholar 

  14. Hori M, Ishigame K, Kabasawa H et al (2010) Precontrast and postcontrast susceptibility-weighted imaging in the assessment of intracranial brain neoplasms at 1.5 T. Jpn J Radiol 28:299–304

    Article  PubMed  Google Scholar 

  15. Brokinkel B, Fischer BR, Peetz-Dienhart S et al (2010) MGMT promoter methylation status in anaplastic meningiomas. J Neurooncol 100:489–490

    Article  PubMed  Google Scholar 

  16. Liu G, Sobering G, Duyn J, Moonen CT (1993) A functional MRI technique combining principles of echo-shifting with a train of observations (PRESTO). Magn Reson Med 30:764–768

    Article  PubMed  CAS  Google Scholar 

  17. Pichlmeier U, Bink A, Schackert G, Stummer W (2008) Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. Neuro Oncol 10:1025–1034

    Article  PubMed  Google Scholar 

  18. Pedraza S, Puig J, Blasco G et al (2012) Reliability of the ABC/2 method in determining acute infarct volume. J Neuroimaging 22:155–159

    Article  PubMed  Google Scholar 

  19. Barth M, Nobauer-Huhmann IM, Reichenbach JR et al (2003) High-resolution three-dimensional contrast-enhanced blood oxygenation level-dependent magnetic resonance venography of brain tumors at 3 Tesla: first clinical experience and comparison with 1.5 Tesla. Invest Radiol 38:409–414

    PubMed  CAS  Google Scholar 

  20. Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    Article  PubMed  CAS  Google Scholar 

  21. Holash J, Wiegand SJ, Yancopoulos GD (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18:5356–5362

    Article  PubMed  CAS  Google Scholar 

  22. Matsukado Y, Maccarty CS, Kernohan JW (1961) The growth of glioblastoma multiforme (astrocytomas, grades 3 and 4) in neurosurgical practice. J Neurosurg 18:636–644

    Article  PubMed  CAS  Google Scholar 

  23. Sampetrean O, Saga I, Nakanishi M et al (2011) Invasion precedes tumor mass formation in a malignant brain tumor model of genetically modified neural stem cells. Neoplasia 13:784–791

    PubMed  Google Scholar 

  24. Wu Z, Mittal S, Kish K, Yu Y, Hu J, Haacke EM (2009) Identification of calcification with MRI using susceptibility-weighted imaging: a case study. J Magn Reson Imaging 29:177–182

    Article  PubMed  Google Scholar 

  25. Zhu WZ, Qi JP, Zhan CJ et al (2008) Magnetic resonance susceptibility weighted imaging in detecting intracranial calcification and hemorrhage. Chin Med J (Engl) 121:2021–2025

    Google Scholar 

  26. Al Sayyari A, Buckley R, McHenery C, Pannek K, Coulthard A, Rose S (2010) Distinguishing recurrent primary brain tumor from radiation injury: a preliminary study using a susceptibility-weighted MR imaging-guided apparent diffusion coefficient analysis strategy. AJNR Am J Neuroradiol 31:1049–1054

    Article  PubMed  CAS  Google Scholar 

  27. Lupo JM, Chuang CF, Chang SM et al (2012) 7-Tesla susceptibility-weighted imaging to assess the effects of radiotherapy on normal-appearing brain in patients with glioma. Int J Radiat Oncol Biol Phys 82:e493–e500

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delia Fahrendorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahrendorf, D., Schwindt, W., Wölfer, J. et al. Benefits of contrast-enhanced SWI in patients with glioblastoma multiforme. Eur Radiol 23, 2868–2879 (2013). https://doi.org/10.1007/s00330-013-2895-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-2895-x

Keywords

Navigation