Skip to main content
Log in

An update on susceptibility‐weighted imaging in brain gliomas

  • Review
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Susceptibility-weighted imaging (SWI) has become a standard component of most brain MRI protocols. While traditionally used for detecting and characterising brain hemorrhages typically associated with stroke or trauma, SWI has also shown promising results in glioma assessment. Numerous studies have highlighted SWI’s role in differentiating gliomas from other brain lesions, such as primary central nervous system lymphomas or metastases. Additionally, SWI aids radiologists in non-invasively grading gliomas and predicting their phenotypic profiles. Various researchers have suggested incorporating SWI as an adjunct sequence for predicting treatment response and for post-treatment monitoring. A significant focus of these studies is on the detection of intratumoural susceptibility signals (ITSSs) in gliomas, which are indicative of microhemorrhages and vessels within the tumour. The quantity, distribution, and characteristics of these ITSSs can provide radiologists with more precise information for evaluating and characterising gliomas. Furthermore, the potential benefits and added value of performing SWI after the administration of gadolinium-based contrast agents (GBCAs) have been explored. This review offers a comprehensive, educational, and practical overview of the potential applications and future directions of SWI in the context of glioma assessment.

Clinical relevance statement

SWI has proven effective in evaluating gliomas, especially through assessing intratumoural susceptibility signal changes, and is becoming a promising, easily integrated tool in MRI protocols for both pre- and post-treatment assessments.

Key Points

Susceptibility-weighted imaging is the most sensitive sequence for detecting blood and calcium inside brain lesions.

This sequence, acquired with and without gadolinium, helps with glioma diagnosis, characterisation, and grading through the detection of intratumoural susceptibility signals.

There are ongoing challenges that must be faced to clarify the role of susceptibility-weighted imaging for glioma assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

CIPS:

Contrast-induced phase shift

CNS:

Central nervous system

DCE:

Dynamic contrast enhanced

DSC:

Dynamic susceptibility contrast

DWI:

Diffusion-weighted imaging

GBCA:

Gadolinium-based contrast agent

GRE:

Gradient echo

HGG:

High-grade glioma

IDH-1:

Isocitrate dehydrogenase 1

ITSS:

Intratumoural susceptibility signal

LGG:

Low-grade glioma

PCNSL:

Primary central nervous system lymphoma

PWI:

Perfusion-weighted imaging

SWI:

Susceptibility-weighted imaging

References

  1. Haacke EM, Mittal S, Wu Z et al (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30:19–30. https://doi.org/10.3174/ajnr.A1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Clarke MA, Pareto D, Pessini-Ferreira L et al (2020) Value of 3T susceptibility-weighted imaging in the diagnosis of multiple sclerosis. AJNR Am J Neuroradiol 41:1001–1008. https://doi.org/10.3174/ajnr.A6547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheng A-L, Batool S, McCreary CR et al (2013) Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds. Stroke 44:2782–2786. https://doi.org/10.1161/STROKEAHA.113.002267

    Article  PubMed  Google Scholar 

  4. Fatemi-Ardekani A, Boylan C, Noseworthy MD (2009) Identification of breast calcification using magnetic resonance imaging. Med Phys 36:5429–5436. https://doi.org/10.1118/1.3250860

    Article  CAS  PubMed  Google Scholar 

  5. Reichenbach JR, Schweser F, Serres B, Deistung A (2015) Quantitative susceptibility mapping: concepts and applications. Clin Neuroradiol 25:225–230. https://doi.org/10.1007/s00062-015-0432-9

    Article  PubMed  Google Scholar 

  6. Aydin O, Buyukkaya R, Hakyemez B (2017) Susceptibility imaging in glial tumor grading; using 3 tesla magnetic resonance (MR) system and 32 channel head coil. Polish J Radiol 82:179–187. https://doi.org/10.12659/PJR.900374

  7. Carrete LR, Young JS, Cha S (2022) Advanced imaging techniques for newly diagnosed and recurrent gliomas. Front Neurosci 16:2–18. https://doi.org/10.3389/fnins.2022.787755

    Article  Google Scholar 

  8. Hsu CCT, Watkins TW, Kwan GNC, Haacke EM (2016) Susceptibility-weighted imaging of glioma: update on current imaging status and future directions. J Neuroimaging 26:383–390. https://doi.org/10.1111/jon.12360

    Article  PubMed  Google Scholar 

  9. Hori M, Ishigame K, Kabasawa H et al (2010) Precontrast and postcontrast susceptibility-weighted imaging in the assessment of intracranial brain neoplasms at 1.5 T. Jpn J Radiol 28:299–304. https://doi.org/10.1007/s11604-010-0427-z

    Article  PubMed  Google Scholar 

  10. Park MJ, Kim HS, Jahng GH et al (2009) Semiquantitative assessment of intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas: comparison with MR perfusion imaging. AJNR Am J Neuroradiol 30:1402–1408. https://doi.org/10.3174/ajnr.A1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang H, Tan Y, Wang XC et al (2013) Susceptibility-weighted imaging: the value in cerebral astrocytomas grading. Neurol India 61:389–395. https://doi.org/10.4103/0028-3886.117617

    Article  PubMed  Google Scholar 

  12. Pinker K, Noebauer-Huhmann IM, Stavrou I et al (2007) High-resolution contrast-enhanced, susceptibility-weighted MR imaging at 3T in patients with brain tumors: correlation with positron-emission tomography and histopathologic findings. AJNR Am J Neuroradiol 28:1280–1286. https://doi.org/10.3174/ajnr.A0540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Furtner J, Schöpf V, Preusser M et al (2014) Non-invasive assessment of intratumoral vascularity using arterial spin labeling: a comparison to susceptibility-weighted imaging for the differentiation of primary cerebral lymphoma and glioblastoma. Eur J Radiol 83:806–810. https://doi.org/10.1016/j.ejrad.2014.01.017

    Article  CAS  PubMed  Google Scholar 

  14. Mohammed W, Xunning H, Haibin S, Jingzhi M (2013) Clinical applications of susceptibility-weighted imaging in detecting and grading intracranial gliomas: a review. Cancer Imaging 13:186–195

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ocak F, Erdem Yildiz M, Dinçer A (2020) Susceptibility-weighted imaging in grading of infiltrative glial tumors. ACU Sağlık Bil Derg 11:488–493

    Google Scholar 

  16. Li C, Ai B, Li Y et al (2010) Susceptibility-weighted imaging in grading brain astrocytomas. Eur J Radiol 75:e81–e85. https://doi.org/10.1016/j.ejrad.2009.08.003

    Article  PubMed  Google Scholar 

  17. Bhattacharjee R, Gupta RK, Patir R et al (2020) Quantitative vs. semiquantitative assessment of intratumoral susceptibility signals in patients with different grades of glioma. J Magn Reson Imaging 51:225–233. https://doi.org/10.1002/jmri.26786

    Article  PubMed  Google Scholar 

  18. Di Ieva A, Göd S, Grabner G et al (2013) Three-dimensional susceptibility-weighted imaging at 7 T using fractal-based quantitative analysis to grade gliomas. Neuroradiology 55:35–40. https://doi.org/10.1007/s00234-012-1081-1

    Article  PubMed  Google Scholar 

  19. Bosemani T, Verschuuren SI, Poretti A, Huisman TAGM (2014) Pitfalls in susceptibility-weighted imaging of the pediatric brain. J Neuroimaging 24:221–225

    Article  PubMed  Google Scholar 

  20. Verschuuren S, Poretti A, Buerki S et al (2012) Susceptibility-weighted imaging of the pediatric brain. AJR Am J Roentgenol 198:. https://doi.org/10.2214/AJR.11.8049

  21. Gaudino S, Marziali G, Pezzullo G et al (2020) Role of susceptibility-weighted imaging and intratumoral susceptibility signals in grading and differentiating pediatric brain tumors at 1.5 T: a preliminary study. Neuroradiology 62:705–713. https://doi.org/10.1007/s00234-020-02386-z

    Article  PubMed  Google Scholar 

  22. Gritsch S, Batchelor TT, Gonzalez Castro LN (2022) Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system. Cancer 128:47–58

    Article  PubMed  Google Scholar 

  23. Yang X, Lin Y, Xing Z et al (2021) Predicting 1p/19q codeletion status using diffusion-, susceptibility-, perfusion-weighted, and conventional MRI in IDH-mutant lower-grade gliomas. Acta Radiol 62:1657–1665. https://doi.org/10.1177/0284185120973624

    Article  PubMed  Google Scholar 

  24. Lin Y, Xing Z, She D et al (2017) IDH mutant and 1p/19q co-deleted oligodendrogliomas: tumor grade stratification using diffusion-, susceptibility-, and perfusion-weighted MRI. Neuroradiology 59:555–562. https://doi.org/10.1007/s00234-017-1839-6

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kong LW, Chen J, Zhao H et al (2019) Intratumoral susceptibility signals reflect biomarker status in gliomas. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-53629-w

    Article  CAS  Google Scholar 

  26. Peters S, Knöß N, Wodarg F et al (2012) Glioblastome vs. lymphome: more diagnostic certainty by using susceptibility-weighted imaging (SWI). Rofo 184:713–718. https://doi.org/10.1055/s-0032-1312862

  27. Kim HS, Jahng GH, Ryu CW, Kim SY (2009) Added value and diagnostic performance of intratumoral susceptibility signals in the differential diagnosis of solitary enhancing brain lesions: Preliminary study. AJNR Am J Neuroradiol 30:1574–1579. https://doi.org/10.3174/ajnr.A1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saini J, Kumar Gupta P, Awasthi A et al (2018) Multiparametric imaging-based differentiation of lymphoma and glioblastoma: using T1-perfusion, diffusion, and susceptibility-weighted MRI. Clin Radiol 73:986.e7-986.e15. https://doi.org/10.1016/j.crad.2018.07.107

    Article  CAS  PubMed  Google Scholar 

  29. Sakata A, Okada T, Yamamoto A et al (2015) Primary central nervous system lymphoma: Is absence of intratumoral hemorrhage a characteristic finding on MRI? Radiol Oncol 49:128–134. https://doi.org/10.1515/raon-2015-0007

    Article  PubMed  PubMed Central  Google Scholar 

  30. Velasco R, Mercadal S, Vidal N et al (2020) Diagnostic delay and outcome in immunocompetent patients with primary central nervous system lymphoma in Spain: a multicentric study. J Neurooncol 148:545–554. https://doi.org/10.1007/s11060-020-03547-z

    Article  CAS  PubMed  Google Scholar 

  31. Fu JH, Chuang TC, Chung HW et al (2015) Discriminating pyogenic brain abscesses, necrotic glioblastomas, and necrotic metastatic brain tumors by means of susceptibility-weighted imaging. Eur Radiol 25:1413–1420. https://doi.org/10.1007/s00330-014-3518-x

    Article  PubMed  Google Scholar 

  32. Lai PH, Chung HW, Chang HC et al (2019) Susceptibility-weighted imaging provides complementary value to diffusion-weighted imaging in the differentiation between pyogenic brain abscesses, necrotic glioblastomas, and necrotic metastatic brain tumors. Eur J Radiol 117:56–61. https://doi.org/10.1016/j.ejrad.2019.05.021

    Article  PubMed  Google Scholar 

  33. Toh CH, Wei KC, Chang CN et al (2012) Differentiation of pyogenic brain abscesses from necrotic glioblastomas with use of susceptibility-weighted imaging. AJNR Am J Neuroradiol 33:1534–1538. https://doi.org/10.3174/ajnr.A2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chang HC, Chuang TC, Chung HW et al (2012) Multilayer appearance on contrast-enhanced susceptibility-weighted images on patients with brain abscesses: possible origins and effects of postprocessing. J Magn Reson Imaging 36:1353–1361. https://doi.org/10.1002/jmri.23766

    Article  PubMed  Google Scholar 

  35. Parry AH, Wani AH, Shaheen FA et al (2018) Evaluation of intracranial tuberculomas using diffusion-weighted imaging (DWI), magnetic resonance spectroscopy (MRS) and susceptibility weighted imaging (SWI). Br J Radiol 91:. https://doi.org/10.1259/bjr.20180342

  36. Berberat J, Grobholz R, Boxheimer L et al (2014) Differentiation between calcification and hemorrhage in brain tumors using susceptibility-weighted imaging: a pilot study. AJR Am J Roentgenol 202:847–850. https://doi.org/10.2214/AJR.13.10745

    Article  PubMed  Google Scholar 

  37. Zulfiqar M, Dumrongpisutikul N, Intrapiromkul J, Yousem DM (2012) Detection of intratumoral calcification in oligodendrogliomas by susceptibility-weighted MR imaging. AJNR Am J Neuroradiol 33:858–864. https://doi.org/10.3174/ajnr.A2862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Haller S, Haacke EM, Thurnher MM, Barkhof F (2021) Susceptibility-weighted Imaging: technical essentials and clinical neurologic applications. Radiology 299:3–26. https://doi.org/10.1148/RADIOL.2021203071

    Article  PubMed  Google Scholar 

  39. Martín-Noguerol T, Montesinos P, Casado-Verdugo OL et al (2021) Susceptibility weighted imaging for evaluation of musculoskeletal lesions. Eur J Radiol 138:109611. https://doi.org/10.1016/j.ejrad.2021.109611

  40. Deistung A, Schweser F, Wiestler B et al (2013) Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma. PLoS One 8:1–8. https://doi.org/10.1371/journal.pone.0057924

    Article  CAS  Google Scholar 

  41. Yu Y, Zhang H, Xiao Z et al (2018) Diffusion-weighted MRI combined with susceptibility-weighted MRI: added diagnostic value for four common lateral ventricular tumors. Acta Radiol 59:980–987. https://doi.org/10.1177/0284185117738562

    Article  PubMed  Google Scholar 

  42. Hsu CCT, Haacke EM, Heyn CC et al (2018) The T1 shine through effect on susceptibility weighted imaging: an under recognized phenomenon. Neuroradiology 60:235–237. https://doi.org/10.1007/s00234-018-1977-5

    Article  PubMed  Google Scholar 

  43. Fonseca APA, do Carmo RL, Pacheco FT et al (2021) Primary angiitis of the CNS with unremarkable vessel wall MR imaging: how the “T1 shinethrough” effect on SWI adds to the detection of gadolinium enhancement of small intraparenchymal brain vessels. Am J Neuroradiol 42:E24–E26. https://doi.org/10.3174/AJNR.A6973

  44. Hsu CCT, Du L, Luong D et al (2021) More on exploiting the t1 shinethrough and T2∗ effects using multiecho susceptibility-weighted imaging. AJNR Am J Neuroradiol 42:E62–E63. https://doi.org/10.3174/ajnr.A7175

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fahrendorf D, Schwindt W, Wölfer J et al (2013) Benefits of contrast-enhanced SWI in patients with glioblastoma multiforme. Eur Radiol 23:2868–2879. https://doi.org/10.1007/s00330-013-2895-x

    Article  PubMed  Google Scholar 

  46. Fahrendorf D, Hesselmann V, Schwindt W et al (2015) Variations of ITSS-morphology and their relationship to location and tumor volume in patients with glioblastoma. J Neuroimaging 25:1015–1022. https://doi.org/10.1111/jon.12228

    Article  PubMed  Google Scholar 

  47. Blasiak B, Landry J, Tyson R et al (2014) Molecular susceptibility weighted imaging of the glioma rim in a mouse model. J Neurosci Methods 226:132–138. https://doi.org/10.1016/j.jneumeth.2014.01.034

    Article  PubMed  Google Scholar 

  48. Al Sayyari A, Buckley R, McHenery C et al (2010) Distinguishing recurrent primary brain tumor from radiation injury: a preliminary study using a susceptibility-weighted MR imaging - Guided apparent diffusion coefficient analysis strategy. AJNR Am J Neuroradiol 31:1049–1054. https://doi.org/10.3174/ajnr.A2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Henriksen OM, del Mar Á-T, Figueiredo P et al (2022) High-grade glioma treatment response monitoring biomarkers: a position statement on the evidence supporting the use of advanced MRI techniques in the clinic, and the latest bench-to-bedside developments. Part 1: Perfusion and Diffusion Techniques. Front Oncol 12:1–27. https://doi.org/10.3389/fonc.2022.810263

    Article  Google Scholar 

  50. Mohammadzadeh A, Mohammadzadeh V, Kooraki S et al (2016) Pretreatment evaluation of glioma. Neuroimaging Clin N Am 26:567–580. https://doi.org/10.1016/j.nic.2016.06.006

    Article  PubMed  Google Scholar 

  51. Schmainda KM (2012) Diffusion-weighted MRI as a biomarker for treatment response in glioma. CNS Oncol 1:169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hyare H, Thust S, Rees J (2017) Advanced MRI techniques in the monitoring of treatment of gliomas. Curr Treat Options Neurol 19:11. https://doi.org/10.1007/s11940-017-0445-6

  53. Kong Z, Yan C, Zhu R et al (2018) Imaging biomarkers guided anti-angiogenic therapy for malignant gliomas. Neuroimage Clin 20:51–60

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lupo JM, Essock-Burns E, Molinaro AM et al (2013) Using susceptibility-weighted imaging to determine response to combined antiangiogenic, cytotoxic, and radiation therapy in patients with glioblastoma multiforme. Neuro Oncol 15:480–489. https://doi.org/10.1093/neuonc/nos325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van Leyen K, Roelcke U, Gruber P et al (2019) Susceptibility and tumor size changes during the time course of standard treatment in recurrent glioblastoma. J Neuroimaging 29:645–649. https://doi.org/10.1111/jon.12631

    Article  PubMed  Google Scholar 

  56. Lecler A, Charbonneau F, Psimaras D et al (2018) Remote brain microhaemorrhages may predict haematoma in glioma patients treated with radiation therapy. Eur Radiol 28:4324–4333. https://doi.org/10.1007/s00330-018-5356-8

    Article  PubMed  Google Scholar 

  57. Wahl M, Anwar M, Hess CP et al (2017) Relationship between radiation dose and microbleed formation in patients with malignant glioma. Radiat Oncol 12:1–8. https://doi.org/10.1186/s13014-017-0861-5

    Article  CAS  Google Scholar 

  58. Bian W, Hess CP, Chang SM et al (2014) Susceptibility-weighted MR imaging of radiation therapy-induced cerebral microbleeds in patients with glioma: a comparison between 3T and 7T. Neuroradiology 56:91–96. https://doi.org/10.1007/s00234-013-1297-8

    Article  PubMed  Google Scholar 

  59. Lupo JM, Chuang CF, Chang SM et al (2011) 7 Tesla susceptibility-weighted imaging to assess the effects of radiation therapy on normal appearing brain in patients with glioma. Int J RadiatOncol Biol Phys 83:1–11. https://doi.org/10.1016/j.earlhumdev.2006.05.022

  60. Shaffer A, Kwok SS, Naik A, et al (2022) Ultra-high-field mri in the diagnosis and management of gliomas: a systematic review. Front Neurol 13:857825. https://doi.org/10.3389/fneur.2022.857825

  61. Natsumeda M, Matsuzawa H, Watanabe M et al (2022) SWI by 7T MR imaging for the microscopic imaging diagnosis of astrocytic and oligodendroglial tumors. AJNR Am J Neuroradiol 43:1575–1581. https://doi.org/10.3174/ajnr.A7666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xu J, Xu H, Zhang W, Zheng J (2018) Contribution of susceptibility- and diffusion-weighted magnetic resonance imaging for grading gliomas. Exp Ther Med 15:5113–5118. https://doi.org/10.3892/etm.2018.6017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang X, Xing Z, She D et al (2022) Grading of IDH-mutant astrocytoma using diffusion, susceptibility and perfusion-weighted imaging. BMC Med Imaging 22:1–10. https://doi.org/10.1186/s12880-022-00832-3

    Article  CAS  Google Scholar 

  64. Saini J, Gupta PK, Sahoo P et al (2018) Differentiation of grade II/III and grade IV glioma by combining “T1 contrast-enhanced brain perfusion imaging” and susceptibility-weighted quantitative imaging. Neuroradiology 60:43–50. https://doi.org/10.1007/s00234-017-1942-8

    Article  PubMed  Google Scholar 

  65. Wu Z, Mittal S, Kish K et al (2010) Identification of calcification with magnetic resonance imaging. J Magn Reson Imaging 29:177–182. https://doi.org/10.1002/jmri.21617.Identification

    Article  Google Scholar 

  66. Moenninghoff C, Maderwald S, Theysohn JM et al (2010) Imaging of adult astrocytic brain tumours with 7 T MRI: preliminary results. Eur Radiol 20:704–713. https://doi.org/10.1007/s00330-009-1592-2

    Article  PubMed  Google Scholar 

  67. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23:1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kames C, Doucette J, Birkl C, Rauscher A (2022) Recovering SWI-filtered phase data using deep learning. Magn Reson Med 87:948–959. https://doi.org/10.1002/mrm.29013

    Article  PubMed  Google Scholar 

  69. Genc O, Morrison MA, Villanueva-Meyer JE et al (2023) DeepSWI: using deep learning to enhance susceptibility contrast on T2*-weighted MRI. J Magn Reson Imaging 58:1200–1210. https://doi.org/10.1002/jmri.28622

    Article  PubMed  Google Scholar 

  70. Liu S, Mok K, Neelavalli J et al (2014) Improved MR venography using quantitative susceptibility-weighted imaging. J Magn Reson Imaging 40:698–708. https://doi.org/10.1002/JMRI.24413

    Article  PubMed  Google Scholar 

  71. Pirastru A, Chen Y, Pelizzari L et al (2021) Quantitative MRI using STrategically Acquired Gradient Echo (STAGE): optimization for 1.5 T scanners and T1 relaxation map validation. Eur Radiol 31:4504–4513. https://doi.org/10.1007/s00330-020-07515-z

    Article  PubMed  Google Scholar 

  72. Haacke EM, Chen Y, Utriainen D et al (2020) STrategically Acquired Gradient Echo (STAGE) imaging, part III: technical advances and clinical applications of a rapid multi-contrast multi-parametric brain imaging method. Magn Reson Imaging 65:15–26. https://doi.org/10.1016/j.mri.2019.09.006

    Article  PubMed  Google Scholar 

  73. Zhang S, Liu Z, Nguyen TD et al (2019) Clinical feasibility of brain quantitative susceptibility mapping. Magn Reson Imaging. https://doi.org/10.1016/J.MRI.2019.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fushimi Y, Nakajima S, Sakata A et al (2023) Value of quantitative susceptibility mapping in clinical neuroradiology. J Magn Reson Imaging. https://doi.org/10.1002/jmri.29010

    Article  PubMed  Google Scholar 

  75. Zeng S, Ma H, Xie D et al (2023) Quantitative susceptibility mapping evaluation of glioma. Eur Radiol 33:6636–6647. https://doi.org/10.1007/s00330-023-09647-4

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No fundings were received for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodoro Martín-Noguerol.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dr. Antonio Luna.

Conflict of interest

The authors of this manuscript declare relationships with the following companies: Antonio Luna, MD, PhD, is an occasional lecturer of Philips, Siemens Healthineers, Bracco, and Canon and receives royalties as a book editor from Springer-Verlag.

The rest of the authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

N/A

Informed consent

N/A

Ethical approval

N/A

Study subjects or cohorts overlap

N/A

Methodology

N/A

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 347 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Noguerol, T., Santos-Armentia, E., Ramos, A. et al. An update on susceptibility‐weighted imaging in brain gliomas. Eur Radiol (2024). https://doi.org/10.1007/s00330-024-10703-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00330-024-10703-w

Keywords

Navigation