Skip to main content
Log in

Cell tracking with optical imaging

  • Molecular Imaging
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Adaptability, sensitivity, resolution and non-invasiveness are the attributes that have contributed to the longstanding use of light as an investigational tool and form the basis of optical imaging (OI). OI, which encompasses numerous techniques and methods, is rapid (<5 min), inexpensive, noninvasive, nontoxic (no radiation) and has molecular (single-cell) sensitivity, which is equal to that of conventional nuclear imaging and several orders of magnitude greater than MRI. This article provides a comprehensive overview of emerging applications of OI-based techniques for in vivo monitoring of new stem cell-based therapies. Different fluorochromes for cell labeling, labeling methods and OI-based cell-tracking techniques will be reviewed with respect to their technical principles, current applications and aims for clinical translation. Advantages and limitations of these new OI-based cell-tracking techniques will be discussed. Non-invasive mapping of cells labeled with fluorochromes or OI marker genes has the potential to evolve further within the clinical realm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gheysens O, Lin S, Cao F et al (2006) Noninvasive evaluation of immunosuppressive drug efficacy on acute donor cell survival. Mol Imaging Biol 8(3):163–170

    Article  PubMed  Google Scholar 

  2. Frangioni JV, Hajjar RJ (2004) In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation 110(21):3378–3383

    Article  PubMed  Google Scholar 

  3. Becker A, Hessenius C, Bhargava S et al (2000) Cyanine dye labeled vasoactive intestinal peptide and somatostatin analog for optical detection of gastroenteropancreatic tumors. Ann N Y Acad Sci 921:275–278

    Article  PubMed  CAS  Google Scholar 

  4. Licha K, Olbrich C (2005) Optical imaging in drug discovery and diagnostic applications. Adv Drug Deliv Rev 57(8):1087–1108

    Article  PubMed  CAS  Google Scholar 

  5. Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13(1):195–208

    PubMed  Google Scholar 

  6. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    Article  PubMed  CAS  Google Scholar 

  7. Shah K, Weissleder R (2005) Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2(2):215–225

    Article  PubMed  Google Scholar 

  8. Shah K, Bureau E, Kim DE et al (2005) Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol 57(1):34–41

    Article  PubMed  CAS  Google Scholar 

  9. Rice BW, Cable MD, Nelson MB (2001) In vivo imaging of light-emitting probes. J Biomed Opt 6(4):432–440

    Article  PubMed  CAS  Google Scholar 

  10. Persigehl T, Heindel W, Bremer C (2005) MR and optical approaches to molecular imaging. Abdom Imaging 30(3):342–354

    Article  PubMed  CAS  Google Scholar 

  11. Hadjantonakis AK, Papaioannou VE (2004) Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice. BMC Biotechnol 4:33

    Article  PubMed  CAS  Google Scholar 

  12. Hardy J, Edinger M, Bachmann MH et al (2001) Bioluminescence imaging of lymphocyte trafficking in vivo. Exp Hematol 29(12):1353–1360

    Article  PubMed  CAS  Google Scholar 

  13. Chemaly ER, Yoneyama R, Frangioni JV et al (2005) Tracking stem cells in the cardiovascular system. Trends Cardiovasc Med 15(8):297–302

    Article  PubMed  CAS  Google Scholar 

  14. Tang Y, Shah K, Messerli SM et al (2003) In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 14(13):1247–1254

    Article  PubMed  CAS  Google Scholar 

  15. Fowler M, Virostko J, Chen Z et al (2005) Assessment of pancreatic islet mass after islet transplantation using in vivo bioluminescence imaging. Transplantation 79(7):768–776

    Article  PubMed  Google Scholar 

  16. Lu Y, Dang H, Middleton B et al (2004) Bioluminescent monitoring of islet graft survival after transplantation. Mol Ther 9(3):428–435

    Article  PubMed  CAS  Google Scholar 

  17. Rudin M, Rausch M, Stoeckli M (2005) Molecular imaging in drug discovery and development: potential and limitations of nonnuclear methods. Mol Imaging Biol 7(1):5–13

    Article  PubMed  Google Scholar 

  18. Ntziachristos V, Tung CH, Bremer C et al (2008) Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8(7):757–760

    Article  CAS  Google Scholar 

  19. Tung CH (2004) Fluorescent peptide probes for in vivo diagnostic imaging. Biopolymers 76(5):391–403

    Article  PubMed  CAS  Google Scholar 

  20. Bremer C, Bredow S, Mahmood U et al (2001) Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model. Radiology 221(2):523–529

    Article  PubMed  CAS  Google Scholar 

  21. Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572

    Article  PubMed  CAS  Google Scholar 

  22. Xiong T, Zhang Z, Liu BF et al (2005) In vivo optical imaging of human adenoid cystic carcinoma cell metastasis. Oral Oncol 41(7):709–715

    Article  PubMed  Google Scholar 

  23. Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23(12):605–613

    Article  PubMed  CAS  Google Scholar 

  24. Wang L, Jackson WC, Steinbach PA et al (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci USA 101(48):16745–16749

    Article  PubMed  CAS  Google Scholar 

  25. Lin Y, Weissleder R, Tung CH (2002) Novel near-infrared cyanine fluorochromes: synthesis, properties, and bioconjugation. Bioconjug Chem 13(3):605–610

    Article  PubMed  CAS  Google Scholar 

  26. Giepmans BN, Adams SR, Ellisman MH et al (2006) The fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224

    Article  PubMed  CAS  Google Scholar 

  27. Bergers G, Javaherian K, Lo KM et al (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284(5415):808–812

    Article  PubMed  CAS  Google Scholar 

  28. Kirchner C, Liedl T, Kudera S et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338

    Article  PubMed  CAS  Google Scholar 

  29. Jaiswal JK, Mattoussi H, Mauro JM et al (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21(1):47–51

    Article  PubMed  CAS  Google Scholar 

  30. Smith AM, Ruan G, Rhyner MN et al (2006) Engineering luminescent quantum dots for in vivo molecular and cellular imaging. Ann Biomed Eng 34(1):3–14

    Article  PubMed  Google Scholar 

  31. Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Article  PubMed  CAS  Google Scholar 

  32. Sosnovik D, Weissleder R (2005) Magnetic resonance and fluorescence based molecular imaging technologies. Prog Drug Res 62:83–115

    Article  PubMed  Google Scholar 

  33. Frank JA, Zywicke H, Jordan EK et al (2002) Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 9(Suppl 2):S484–S487

    Article  PubMed  Google Scholar 

  34. Kraitchman DL, Heldman AW, Atalar E et al (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107(18):2290–2293

    Article  PubMed  Google Scholar 

  35. Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499

    Article  PubMed  CAS  Google Scholar 

  36. Daldrup-Link HE, Rudelius M, Metz S et al (2004) Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy. Eur J Nucl Med Mol Imaging 31(9):1312–1321

    Article  PubMed  Google Scholar 

  37. Kircher MF, Allport JR, Graves EE et al (2003) In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 63(20):6838–6846

    PubMed  CAS  Google Scholar 

  38. Thompson M, Wall DM, Hicks RJ et al (2005) In vivo tracking for cell therapies. Q J Nucl Med Mol Imaging 49(4):339–348

    PubMed  CAS  Google Scholar 

  39. Li C, Wang W, Wu Q et al (2006) Dual optical and nuclear imaging in human melanoma xenografts using a single targeted imaging probe. Nucl Med Biol 33(3):349–358

    Article  PubMed  CAS  Google Scholar 

  40. Ponomarev V, Doubrovin M, Serganova I et al (2004) A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging 31(5):740–751

    Article  PubMed  CAS  Google Scholar 

  41. Modo M, Cash D, Mellodew K et al (2002) Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage 17(2):803–811

    Article  PubMed  Google Scholar 

  42. Vuu K, Xie J, McDonald MA et al (2005) Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug Chem 16(4):995–999

    Article  PubMed  CAS  Google Scholar 

  43. Askenasy N, Farkas DL (2002) Optical imaging of PKH-labeled hematopoietic cells in recipient bone marrow in vivo. Stem Cells 20(6):501–513

    Article  PubMed  Google Scholar 

  44. Medintz IL, Uyeda HT, Goldman ER et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Article  PubMed  CAS  Google Scholar 

  45. Voura EB, Jaiswal JK, Mattoussi H et al (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10(9):993–998

    Article  PubMed  CAS  Google Scholar 

  46. Freyman T, Polin G, Osman H et al (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27(9):1114–1122

    Article  PubMed  Google Scholar 

  47. Hodgetts SI, Beilharz MW, Scalzo AA et al (2000) Why do cultured transplanted myoblasts die in vivo? DNA quantification shows enhanced survival of donor male myoblasts in host mice depleted of CD4 and CD8 cells or Nk1.1 cells. Cell Transplant 9(4):489–502

    PubMed  CAS  Google Scholar 

  48. Rando TA, Pavlath GK, Blau HM (1995) The fate of myoblasts following transplantation into mature muscle. Exp Cell Res 220(2):383–389

    Article  PubMed  CAS  Google Scholar 

  49. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95(1):9–20

    Article  PubMed  CAS  Google Scholar 

  50. Krause DS, Theise ND, Collector MI et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105(3):369–377

    Article  PubMed  CAS  Google Scholar 

  51. Askenasy N, Zorina T, Farkas DL et al (2002) Transplanted hematopoietic cells seed in clusters in recipient bone marrow in vivo. Stem Cells 20(4):301–310

    Article  PubMed  Google Scholar 

  52. Cao F, Lin S, Xie X et al (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113(7):1005–1014

    Article  PubMed  Google Scholar 

  53. Barbash IM, Chouraqui P, Baron J et al (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108(7):863–868

    Article  PubMed  Google Scholar 

  54. Ray P, De A, Min JJ et al (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64(4):1323–1330

    Article  PubMed  CAS  Google Scholar 

  55. Zavattini G, Vecchi S, Mitchell G et al (2006) A hyperspectral fluorescence system for 3D in vivo optical imaging. Phys Med Biol 51(8):2029–2043

    Article  PubMed  CAS  Google Scholar 

  56. Ntziachristos V, Chance B (2001) Probing physiology and molecular function using optical imaging: applications to breast cancer. Breast Cancer Res 3(1):41–46

    Article  PubMed  CAS  Google Scholar 

  57. Weissleder RA (2001) clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317

    Article  PubMed  CAS  Google Scholar 

  58. Ahrens ET, Flores R, Xu H et al (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23(8):983–987

    Article  PubMed  CAS  Google Scholar 

  59. Hofmann M, Wollert KC, Meyer GP et al (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111(17):2198–2202

    Article  PubMed  Google Scholar 

  60. Cao YA, Bachmann MH, Beilhack A et al (2005) Molecular imaging using labeled donor tissues reveals patterns of engraftment, rejection, and survival in transplantation. Transplantation 80(1):134–139

    Article  PubMed  Google Scholar 

  61. Brazelton TR, Blau HM (2005) Optimizing techniques for tracking transplanted stem cells in vivo. Stem Cells 23(9):1251–1265

    Article  PubMed  Google Scholar 

  62. Wang X, Rosol M, Ge S et al (2003) Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 102(10):3478–3482

    Article  PubMed  CAS  Google Scholar 

  63. Shichinohe H, Kuroda S, Lee JB et al (2004) In vivo tracking of bone marrow stromal cells transplanted into mice cerebral infarct by fluorescence optical imaging. Brain Res Brain Res Protoc 13(3):166–175

    Article  PubMed  Google Scholar 

  64. Shah K, Tung CH, Yang K et al (2004) Inducible release of TRAIL fusion proteins from a proapoptotic form for tumor therapy. Cancer Res 64(9):3236–3242

    Article  PubMed  CAS  Google Scholar 

  65. Costa GL, Sandora MR, Nakajima A et al (2001) Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J Immunol 167(4):2379–2387

    PubMed  CAS  Google Scholar 

  66. Jones OY, Steele A, Jones JM et al (2004) Nonmyeloablative bone marrow transplantation of BXSB lupus mice using fully matched allogeneic donor cells from green fluorescent protein transgenic mice. J Immunol 172(9):5415–5419

    PubMed  CAS  Google Scholar 

  67. Nakajima A, Seroogy CM, Sandora MR et al (2001) Antigen-specific T cell-mediated gene therapy in collagen-induced arthritis. J Clin Invest 107(10):1293–1301

    Article  PubMed  CAS  Google Scholar 

  68. Moore A, Grimm J, Han B et al (2004) Tracking the recruitment of diabetogenic CD8 T-cells to the pancreas in real time. Diabetes 53(6):1459–1466

    Article  PubMed  CAS  Google Scholar 

  69. Simon GH, Daldrup-Link HE, Kau J et al (2006) Optical imaging of experimental arthritis using allogeneic leukocytes labeled with a near-infrared fluorescent probe. Eur J Nucl Med Mol Imaging 33(9):998–1006

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike E. Daldrup-Link.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutton, E.J., Henning, T.D., Pichler, B.J. et al. Cell tracking with optical imaging. Eur Radiol 18, 2021–2032 (2008). https://doi.org/10.1007/s00330-008-0984-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-0984-z

Keywords

Navigation