Skip to main content
Log in

Optical imaging of experimental arthritis using allogeneic leukocytes labeled with a near-infrared fluorescent probe

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to assess the feasibility of inflammation detection in an antigen-induced arthritis model using fluorescent leukocytes and optical imaging.

Methods

Antigen-mediated monoarthritis was induced in the right knee of 12 Sprague-Dawley rats. Six rats remained untreated and six rats were treated with cortisone. All rats received ex vivo fluorescent-labeled rat leukocytes. Optical images of both knees were acquired before and at 5 min, 1 h, 4 h, and 24 h after cell injection. Images were evaluated qualitatively and quantitatively by calculating signal intensity ratios between the right arthritic (A) and contralateral normal (N) knee. A/N ratios were tested for significant differences between baseline values and values after cell injection using a paired t test as well as between the untreated and cortisone-treated group using an unpaired t test. Synovial specimens were processed and evaluated for labeled cells with fluorescence microscopy.

Results

At 4 h and 24 h p.i., the A/N ratios of untreated arthritic knees showed a significant signal increase compared with baseline values (p<0.05) and a significant difference compared with A/N ratios of cortisone-treated animals (p<0.05). Fluorescent microscopy confirmed the presence of labeled cells in the arthritic synovium.

Conclusion

Inflammation in antigen-induced arthritis can be detected with ex vivo labeled allogenic leukocytes and optical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Winkelman J, Collica CJ, Sandler SG. The delineation of abscesses by scintiphotography using Cr51 labeled leukocytes. Am J Roentgenol Radium Ther Nucl Med 1968;103:881–885

    PubMed  CAS  Google Scholar 

  2. Deysine M, Robinson RG, Wilder JR. Abscess detection by radioactive chromium labeled autologous white blood cells. Surg Gynecol Obstet 1970;131:216–220

    PubMed  CAS  Google Scholar 

  3. Scott JL, Davidson JG, Marino JV, McMillan R. Leukocyte labeling with 51 chromium. 3. The kinetics of normal lymphocytes. Blood 1972;40:276–281

    PubMed  CAS  Google Scholar 

  4. Uchida T, Kariyone S. Organ distribution of the 99 mTc-labeled white cells. Nippon Ketsueki Gakkai Zasshi 1973;36:78–81

    PubMed  CAS  Google Scholar 

  5. Andersen BR, English D, Akalin HE, Henderson W. Inflammatory lesions localized with technetium Tc 99 m-labeled leukocytes. Arch Intern Med 1975;135:1067–1071

    Article  PubMed  CAS  Google Scholar 

  6. Segal AW, Arnot RN, Thakur ML, Lavender JP. Indium-111-labelled leucocytes for localisation of abscesses. Lancet 1976;2:1056–1058

    Article  PubMed  CAS  Google Scholar 

  7. Thakur ML, Coleman RE, Mayhall CG, Welch MJ Jr. Preparation and evaluation of 111In-labeled leukocytes as an abscess imaging agent in dogs. Radiology 1976;119:731

    PubMed  CAS  Google Scholar 

  8. Thakur ML, Lavender JP, Arnot RN, Silvester DJ, Segal AW. Indium-111-labeled autologous leukocytes in man. J Nucl Med 1977;18:1014–1021

    PubMed  CAS  Google Scholar 

  9. Thakur ML, Coleman RE, Welch MJ. Indium-111-labeled leukocytes for the localization of abscesses: preparation, analysis, tissue distribution, and comparison with gallium-67 citrate in dogs. J Lab Clin Med 1977;89:217–228

    PubMed  CAS  Google Scholar 

  10. Doherty PW, Bushberg JT, Lipton MJ, Meares CF, Goodwin DA. The use of indium-111-labeled leukocytes for abscess detection. Clin Nucl Med 1978;3:108–110

    Article  PubMed  CAS  Google Scholar 

  11. Black RE, Coleman RE, Welch DM, Maxwell JG. Abscess detection using autologous leukocytes labeled with indium-111. Curr Surg 1979;36:288–290

    PubMed  CAS  Google Scholar 

  12. Martin WR, Gurevich N, Goris ML, McDougall IR. Detection of occult abscesses with 111In-labeled leukocytes. AJR Am J Roentgenol 1979;133:123–125

    PubMed  CAS  Google Scholar 

  13. Alavi JB, Alavi A, Staum MM. Evaluation of infection in neutropenic patients with indium-111-labeled donor granulocytes. Clin Nucl Med 1980;5:397–400

    Article  PubMed  CAS  Google Scholar 

  14. Ascher NL, Forstrom L, Simmons RL. Radiolabeled autologous leukocyte scanning in abscess detection. World J Surg 1980;4:395–402

    Article  PubMed  CAS  Google Scholar 

  15. Beightol RW, Baker WJ. Labeling autologous leukocytes with indium-111 oxine. Am J Hosp Pharm 1980;37:847–850

    PubMed  CAS  Google Scholar 

  16. Coleman RE, Black RE, Welch DM, Maxwell JG. Indium-111 labeled leukocytes in the evaluation of suspected abdominal abscesses. Am J Surg 1980;139:99–104

    Article  PubMed  CAS  Google Scholar 

  17. Fawcett HD, Lantieri RL, Frankel A, McDougall IR. Differentiating hepatic abscess from tumor: combined 111In white blood cell and 99 mTc liver scans. AJR Am J Roentgenol 1980;135:53–56

    PubMed  CAS  Google Scholar 

  18. Goedemans WT, Hardeman MR, Belfer AJ. Comparison of indium-111 oxinate labelled autologous granulocytes with indium-111 oxinate and indium-111 chloride as abscess scanning agents. An experimental study in an animal model. Eur J Nucl Med 1980;5:63–68

    Article  PubMed  CAS  Google Scholar 

  19. Fawcett HD, Goodwin DA, Lantieri RL. In-111-leukocyte scanning in inflammatory renal disease. Clin Nucl Med 1981;6:237–241

    Article  PubMed  CAS  Google Scholar 

  20. Rovekamp MH, Hardeman MR, van der Schoot JB, Belfer AJ. 111Indium-labelled leucocyte scintigraphy in the diagnosis of inflammatory disease—first results. Br J Surg 1981;68:150–153

    Article  PubMed  CAS  Google Scholar 

  21. Segal AW, Ensell J, Munro JM, Sarner M. Indium-111 tagged leucocytes in the diagnosis of inflammatory bowel disease. Lancet 1981;2:230–232

    Article  PubMed  CAS  Google Scholar 

  22. Kipper MS, Williams RJ. The potential role of In-111 white blood cell scans in patients with inflammatory bowel disease. Clin Nucl Med 1982;7:469–471

    Article  PubMed  CAS  Google Scholar 

  23. Peters AM, Saverymuttu SH, Reavy HJ, Danpure HJ, Osman S, Lavender JP. Imaging of inflammation with indium-111 tropolonate labeled leukocytes. J Nucl Med 1983;24:39–44

    PubMed  CAS  Google Scholar 

  24. Ahmed F, Weiland FL, Rosen PR, Borchert RD. Demonstration of occult abdominal infection with indium-111 WBC and gallium-67 scintigraphy. Clin Nucl Med 1984;9:355–356

    Article  PubMed  CAS  Google Scholar 

  25. Bernstein RM, Mackworth-Young CG, Saverymutu SH, Gupta S, England JP, Hughes GR. Yersinia arthritis: demonstration of occult enteritis by 111indium leucocyte scanning. Ann Rheum Dis 1984;43:493–494

    Article  PubMed  CAS  Google Scholar 

  26. Coakley AJ, Mountford PJ. 99 mTc-HMPAO for labelling leucocytes in infection. Lancet 1987;1:44

    Article  PubMed  CAS  Google Scholar 

  27. Henneman PL, Marcus CS, Butler JA, Freedland ES, Wilson SE, Rothstein RJ. Appendicitis: evaluation by Tc-99 m leukocyte scan. Ann Emerg Med 1988;17:111–116

    Article  PubMed  CAS  Google Scholar 

  28. Vorne M, Lantto T, Paakkinen S, Salo S, Soini I. Clinical comparison of 99Tcm-HMPAO labelled leucocytes and 99Tcm-nanocolloid in the detection of inflammation. Acta Radiol 1989;30:633–637

    Article  PubMed  CAS  Google Scholar 

  29. Vorne M, Soini I, Lantto T, Paakkinen S. Technetium-99 m HM-PAO-labeled leukocytes in detection of inflammatory lesions: comparison with gallium-67 citrate. J Nucl Med 1989;30:1332–1336

    PubMed  CAS  Google Scholar 

  30. Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, et al. Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemi-arbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci U S A 2002;99:3030–3035

    Article  PubMed  CAS  Google Scholar 

  31. Hansch A, Frey O, Hilger I, Sauner D, Haas M, Schmidt D, et al. Diagnosis of arthritis using near-infrared fluorochrome Cy5.5. Invest Radiol 2004;39:626–632.

    Article  PubMed  CAS  Google Scholar 

  32. Hansch A, Frey O, Sauner D, Hilger I, Haas M, Malich A, et al. In vivo imaging of experimental arthritis with near-infrared fluorescence. Arthritis Rheum 2004;50:961–967

    Article  PubMed  Google Scholar 

  33. Chen WT, Mahmood U, Weissleder R, Tung CH. Arthritis imaging using a near-infrared fluorescence folate-targeted probe. Arthritis Res Ther 2005;7:R310–R317

    Article  PubMed  CAS  Google Scholar 

  34. Wunder A, Tung CH, Muller-Ladner U, Weissleder R, Mahmood U. In vivo imaging of protease activity in arthritis: a novel approach for monitoring treatment response. Arthritis Rheum 2004;50:2459–2465

    Article  PubMed  CAS  Google Scholar 

  35. Haugland RP, Spence MTZ, Johnson ID. In:Handbook of fluorescent probes and research products. 9th ed.Molecular Probes, 4849 Pitchford Ave., Eugene, OR 97402, USA

  36. Jasin HE, Cooke TD, Hurd ER, Smiley JD, Ziff M. Immunologic models used for the study of rheumatoid arthritis. Fed Proc 1973;32:147–152

    PubMed  CAS  Google Scholar 

  37. Wooley PH. The usefulness and the limitations of animal models in identifying targets for therapy in arthritis. Best Pract Res Clin Rheumatol 2004;18:47–58

    Article  PubMed  CAS  Google Scholar 

  38. Kinne RW, Brauer R, Stuhlmuller B, Palombo-Kinne E, Burmester GR. Macrophages in rheumatoid arthritis. Arthritis Res 2000;2:189–202

    Article  PubMed  CAS  Google Scholar 

  39. Iguchi T, Kurosaka M, Ziff M. Electron microscopic study of HLA-DR and monocyte/macrophage staining cells in the rheumatoid synovial membrane. Arthritis Rheum 1986;29:600–613

    Article  PubMed  CAS  Google Scholar 

  40. Rooney M, Whelan A, Feighery C, Bresnihan B. The immunohistologic features of synovitis, disease activity and in vitro IgM rheumatoid factor synthesis by blood mononuclear cells in rheumatoid arthritis. J Rheumatol 1989;16:459–467

    PubMed  CAS  Google Scholar 

  41. Malone DG, Wilder RL, Saavedra-Delgado AM, Metcalfe DD. Mast cell numbers in rheumatoid synovial tissues. Correlations with quantitative measures of lymphocytic infiltration and modulation by antiinflammatory therapy. Arthritis Rheum 1987;30:130–137

    Article  PubMed  CAS  Google Scholar 

  42. Ridley MG, Kingsley G, Pitzalis C, Panayi GS. Monocyte activation in rheumatoid arthritis: evidence for in situ activation and differentiation in joints. Br J Rheumatol 1990;29:84–88

    Article  PubMed  CAS  Google Scholar 

  43. Daldrup-Link HE, Rudelius M, Metz S, Piontek G, Pichler B, Settles M et al. Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy. Eur J Nucl Med Mol Imaging 2004;31:1312–1321

    Article  PubMed  Google Scholar 

  44. Shichinohe H, Kuroda S, Lee JB, Nishimura G, Yano S, Seki T, et al. In vivo tracking of bone marrow stromal cells transplanted into mice cerebral infarct by fluorescence optical imaging. Brain Res Brain Res Protoc 2004;13:166–175

    Article  PubMed  Google Scholar 

  45. Moore A, Grimm J, Han B, Santamaria P. Tracking the recruitment of diabetogenic CD8+ T-cells to the pancreas in real time. Diabetes 2004;53:1459–1466

    Article  PubMed  CAS  Google Scholar 

  46. Nakajima A, Seroogy CM, Sandora MR, Tarner IH, Costa GL, Taylor-Edwards C, et al. Antigen-specific T cell-mediated gene therapy in collagen-induced arthritis. J Clin Invest 2001;107:1293–1301

    Article  PubMed  CAS  Google Scholar 

  47. Hardy J, Edinger M, Bachmann MH, Negrin RS, Fathman CG, Contag CH. Bioluminescence imaging of lymphocyte trafficking in vivo. Exp Hematol 2001;29:1353–1360

    Article  PubMed  CAS  Google Scholar 

  48. Metz S, Bonaterra G, Rudelius M, Settles M, Rummeny EJ, Daldrup-Link HE. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 2004;14:1851–1858

    Article  PubMed  Google Scholar 

  49. Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 2003;228:480–487

    Article  PubMed  Google Scholar 

  50. Daldrup-Link HE, Meier R, Rudelius M, Piontek G, Piert M, Metz S, et al. In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur Radiol 2005;15:4–13

    Article  PubMed  Google Scholar 

  51. Daldrup-Link HE, Rudelius M, Oostendorp RA, Settles M, Piontek G, Metz S, et al. Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 2003;228:760–767

    Article  PubMed  Google Scholar 

  52. Zhang Z, Jiang Q, Jiang F, Ding G, Zhang R, Wang L, et al. In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor. Neuroimage 2004;23:281–287

    Article  PubMed  CAS  Google Scholar 

  53. Weissleder R, Cheng HC, Bogdanova A, Bogdanov A Jr. Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging 1997;7:258–263

    Article  PubMed  CAS  Google Scholar 

  54. Yeh TC, Zhang W, Ildstad ST, Ho C. In vivo dynamic MRI tracking of rat T-cells labeled with superparamagnetic iron-oxide particles. Magn Reson Med 1995;33:200–208

    Article  PubMed  CAS  Google Scholar 

  55. Zelivyanskaya ML, Nelson JA, Poluektova L et al. Tracking superparamagnetic iron oxide labeled monocytes in brain by high-field magnetic resonance imaging. J Neurosci Res 2003;73:284–295

    Article  PubMed  CAS  Google Scholar 

  56. Jendelova P, Herynek V, Urdzikova L, Glogarova K, Kroupova J, Andersson B, et al. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 2004;76:232–243

    Article  PubMed  CAS  Google Scholar 

  57. Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med 2003;9:123–128

    Article  PubMed  CAS  Google Scholar 

  58. Hansch A, Sauner D, Hilger I, Haas M, Malich A, Brauer R, et al. Noninvasive diagnosis of arthritis by autofluorescence. Invest Radiol 2003;38:578–583

    Article  PubMed  CAS  Google Scholar 

  59. Na R, Stender IM, Ma L, Wulf HC. Autofluorescence spectrum of skin: component bands and body site variations. Skin Res Technol 2000;6:112–117

    Article  PubMed  Google Scholar 

  60. Croce AC, Spano A, Locatelli D, Barni S, Sciola L, Bottiroli G. Dependence of fibroblast autofluorescence properties on normal and transformed conditions. Role of the metabolic activity. Photochem Photobiol 1999;69:364–374

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Research and Education Foundation Grant from the Society of Pediatric Radiology and by a seed grant from the Department of Radiology, UCSF.

The authors would like to thank Peter Lange, MD, MRCP (UK) for his critical revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard H. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, G.H., Daldrup-Link, H.E., Kau, J. et al. Optical imaging of experimental arthritis using allogeneic leukocytes labeled with a near-infrared fluorescent probe. Eur J Nucl Med Mol Imaging 33, 998–1006 (2006). https://doi.org/10.1007/s00259-006-0081-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0081-y

Keywords

Navigation