Skip to main content
Log in

Engineering Luminescent Quantum Dots for In Vivo Molecular and Cellular Imaging

  • Nanobioengineering
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Semiconductor quantum dots are luminescent nanoparticles that are under intensive development for use as a new class of optical imaging contrast agents. Their novel properties such as optical tunability, improved photostability, and multicolor light emission have opened new opportunities for imaging living cells and in vivo animal models at unprecedented sensitivity and spatial resolution. Combined with biomolecular engineering strategies for tailoring the particle surfaces at the molecular level, bioconjugated quantum dot probes are well suited for imaging single-molecule dynamics in living cells, for monitoring protein–protein interactions within specific intracellular locations, and for detecting diseased sites and organs in deep tissue. In this article, we describe the engineering principles for preparing high-quality quantum dots and for conjugating the dots to biomolecular ligands. We also discuss recent advances in using quantum dots for in vivo molecular and cellular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.

Similar content being viewed by others

Abbreviations

FRET:

fluorescence resonance energy transfer

PEG:

polyethylene glycol

QD:

quantum dot

RES:

reticuloendothelial system

TOP:

trioctylphosphine

TOPO:

trioctylphosphine oxide

REFERENCES

  1. Akerman, M. E., W. C. W. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. U.S.A. 99:12617–12621, 2002.

    Article  PubMed  CAS  Google Scholar 

  2. Aldana, J., Y. A. Wang, and X. G. Peng. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123:8844–8850, 2001.

    Article  PubMed  CAS  Google Scholar 

  3. Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100:13226–13239, 1996.

    Article  CAS  Google Scholar 

  4. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937, 1996.

    Article  CAS  Google Scholar 

  5. Bailey, R. E., and S. M. Nie. Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125:7100–7106, 2003.

    Article  PubMed  CAS  Google Scholar 

  6. Bakalova, R., H. Ohba, Z. Zhelev, M. Ishikawa, and Y. Baba. Quantum dots as photosensitizers? Nat. Biotechnol. 22:1360–1361, 2004.

    Article  PubMed  CAS  Google Scholar 

  7. Ballou, B., B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner. Noninvasive imaging of quantum dots in mice. Bioconjug. Chem. 15:79–86, 2004.

    Article  PubMed  CAS  Google Scholar 

  8. Bruchez, M., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos. Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016, 1998.

    Article  PubMed  CAS  Google Scholar 

  9. Chan, W. C. W., and S. M. Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018, 1998.

    Article  PubMed  CAS  Google Scholar 

  10. Chen, F., and D. Gerion. Fluorescent CdSe/ZnS nanocrystal–peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett. 4:1827–1832, 2004.

    Article  CAS  Google Scholar 

  11. Crouch, D., S. Norager, P. O'Brien, J. H. Park, and N. Pickett. New synthetic routes for quantum dots. Philos. Trans. R. Soc. Lond., Ser. A. 361:297–310, 2003.

    CAS  Google Scholar 

  12. Dabbousi, B. O., J. RodriguezViejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101:9463–9475, 1997.

    Article  CAS  Google Scholar 

  13. Dahan, M., S. Levi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445, 2003.

    Article  PubMed  CAS  Google Scholar 

  14. Derfus, A. M., W. C. W. Chan, and S. N. Bhatia. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater. 16:961–966, 2004.

    Article  CAS  Google Scholar 

  15. Derfus, A. M., W. C. W. Chan, and S. N. Bhatia. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4:11–18, 2004.

    Article  CAS  Google Scholar 

  16. Dubertret, B., P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762, 2002.

    Article  PubMed  CAS  Google Scholar 

  17. Efros, A. L., and A. L. Efros. Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 16:772–775, 1982.

    Google Scholar 

  18. Ekimov, A. I., and A. A. Onushchenko. Quantum size effect in the optical-spectra of semiconductor micro-crystals. Sov. Phys. Semicond. 16:775–778, 1982.

    Google Scholar 

  19. Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7:626–634, 2003.

    Article  PubMed  CAS  Google Scholar 

  20. Gao, X. H., W. C. W. Chan, and S. M. Nie. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J. Biomed. Opt. 7:532–537, 2002.

    Article  PubMed  CAS  Google Scholar 

  21. Gao, X. H., Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22:969–976, 2004.

    Article  PubMed  CAS  Google Scholar 

  22. Gaponik, N., D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B 106:7177–7185, 2002.

    Article  CAS  Google Scholar 

  23. Gerion, D., F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105:8861–8871, 2001.

    Article  CAS  Google Scholar 

  24. Goldman, E. R., E. D. Balighian, H. Mattoussi, M. K. Kuno, J. M. Mauro, P. T. Tran, and G. P. Anderson. Avidin: A natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 124:6378–6382, 2002.

    Article  PubMed  CAS  Google Scholar 

  25. Guo, W., J. J. Li, Y. A. Wang, and X. G. Peng. Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: Superior chemical, photochemical and thermal stability. J. Am. Chem. Soc. 125:3901–3909, 2003.

    Article  PubMed  CAS  Google Scholar 

  26. Hanaki, K., A. Momo, T. Oku, A. Komoto, S. Maenosono, Y. Yamaguchi, and K. Yamamoto. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem. Biophys. Res. Commun. 302:496–501, 2003.

    Article  PubMed  CAS  Google Scholar 

  27. Hines, M. A., and P. Guyot-Sionnest. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem.. 100:468–471, 1996.

    Article  CAS  Google Scholar 

  28. Hines, M. A., and G. D. Scholes. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15:1844–1849, 2003.

    Article  CAS  Google Scholar 

  29. Hoshino, A., K. Fujioka, T. Oku, M. Suga, Y. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 4:2163–2169, 2004.

    Article  CAS  Google Scholar 

  30. Hoshino, A., K. Hanaki, K. Suzuki, and K. Yamamoto. Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem. Biophys. Res. Commun. 314:46–53, 2004.

    Article  PubMed  CAS  Google Scholar 

  31. Jaiswal, J. K., H. Mattoussi, J. M. Mauro, and S. M. Simon. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21:47–51, 2003.

    Article  PubMed  CAS  Google Scholar 

  32. Kim, S., B. Fisher, H. J. Eisler, and M. Bawendi. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 125:11466–11467, 2003.

    Article  PubMed  CAS  Google Scholar 

  33. Kim, S., Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22:93–97, 2004.

    Article  PubMed  Google Scholar 

  34. Lagerholm, B., M. Wang, L. Ernst, D. Ly, H. Liu, M. Bruchez, and A. Waggoner. Multicolor coding of cells with cationic peptide coated quantum dots. Nano Lett. 4:2019–2022, 2004.

    Article  CAS  Google Scholar 

  35. Larson, D. R., W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436, 2003.

    Article  PubMed  Google Scholar 

  36. Lidke, D. S., P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol. 22:198–203, 2004.

    Article  PubMed  CAS  Google Scholar 

  37. Lim, Y. T., S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imag. 2:50–64, 2003.

    Article  CAS  Google Scholar 

  38. Mahtab, R., J. P. Rogers, C. P. Singleton, and C. J. Murphy. Preferential adsorption of a ''kinked'' DNA to a neutral curved surface: Comparisons to and implications for nonspecific DNA-protein interactions. J. Am. Chem. Soc. 118:7028–7032, 1996.

    Article  CAS  Google Scholar 

  39. Mattheakis, L., J. Dias, Y. Choi, J. Gong, M. Bruchez, J. Liu, and E. Wang. Optical coding of mammalian cells using semiconductor quantum dots. Anal. Biochem. 327:200–208, 2004.

    Article  PubMed  CAS  Google Scholar 

  40. Mattoussi, H., J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi. Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122:12142–12150, 2000.

    Article  CAS  Google Scholar 

  41. Mitchell, G. P., C. A. Mirkin, and R. L. Letsinger. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121:8122–8123, 1999.

    Article  CAS  Google Scholar 

  42. Murray, C. B., D. J. Norris, and M. G. Bawendi. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115:8706–8715, 1993.

    Article  CAS  Google Scholar 

  43. Nirmal, M., and L. Brus. Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 32:407–414, 1999.

    Article  CAS  Google Scholar 

  44. Nisman, R., G. Dellaire, Y. Ren, R. Li, and D. P. Bazett-Jones. Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J. Histochem. Cytochem. 52:13–18, 2004.

    PubMed  CAS  Google Scholar 

  45. Osaki, F., T. Kanamori, S. Sando, T. Sera, and Y. Aoyama. A quantum dot conjugated sugar ball and its cellular uptake on the size effects of endocytosis in the subviral region. J. Am. Chem. Soc. 126:6520–6521, 2004.

    Article  PubMed  CAS  Google Scholar 

  46. Parak, W. J., R. Boudreau, M. Le Gros, D. Gerion, D. Zanchet, C. M. Micheel, S. C. Williams, A. P. Alivisatos, and C. Larabell. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv. Mater. 14:882–885, 2002.

    Article  CAS  Google Scholar 

  47. Peng, X. G. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 15:459–463, 2003.

    Article  CAS  Google Scholar 

  48. Peng, Z. A., and X. G. Peng. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123:183–184, 2001.

    Article  PubMed  CAS  Google Scholar 

  49. Peng, X. G., J. Wickham, and A. P. Alivisatos. Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 120:5343–5344, 1998.

    Article  CAS  Google Scholar 

  50. Pietryga, J., R. Schaller, D. Werder, M. Stewart, V. Klimov, and J. Hollingsworth. Pushing the band gap envelope: Mid-infrared emitting colloidal PbSe quantum dots. J. Am. Chem. Soc. 126:11752–11753, 2004.

    Article  PubMed  CAS  Google Scholar 

  51. Pinaud, F., D. King, H. P. Moore, and S. Weiss. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126:6115–6123, 2004.

    Article  PubMed  CAS  Google Scholar 

  52. Qu, L. H., and X. G. Peng. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 124:2049–2055, 2002.

    Article  PubMed  CAS  Google Scholar 

  53. Qu, L. H., Z. A. Peng, and X. G. Peng. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 1:333–337, 2001.

    Article  CAS  Google Scholar 

  54. Roberts, M., M. Bentley, and J. Harris. Chemistry for peptide and protein PEGylation. Adv. Drug Delivery. Rev. 54:459–476, 2002.

    Article  CAS  Google Scholar 

  55. Shiohara, A., A. Hoshino, K. Hanaki, K. Suzuki, and K. Yamamoto. On the cyto-toxicity caused by quantum dots. Microbiol. Immunol. 48:669–675, 2004.

    PubMed  CAS  Google Scholar 

  56. Sukhanova, A., M. Devy, L. Venteo, H. Kaplan, M. Artemyev, V. Oleinikov, D. Klinov, M. Pluot, J. H. M. Cohen, and I. Nabiev. Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal. Biochem. 324:60–67, 2004.

    Article  PubMed  CAS  Google Scholar 

  57. Talapin, D. V., A. L. Rogach, A. Kornowski, M. Haase, and H. Weller. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 1:207–211, 2001.

    Article  CAS  Google Scholar 

  58. Talapin, D. V., A. L. Rogach, I. Mekis, S. Haubold, A. Kornowski, M. Haase, and H. Weller. Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals. Colloids Surf. A 202:145–154, 2002.

    Article  CAS  Google Scholar 

  59. Voura, E., J. Jaiswal, H. Mattoussi, and S. Simon. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. 10:993–998, 2004.

    Article  PubMed  CAS  Google Scholar 

  60. Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 19:316–317, 2001.

    Article  PubMed  CAS  Google Scholar 

  61. Wu, X. Y., H. J. Liu, J. Q. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. F. Ge, F. Peale, and M. P. Bruchez. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21:41–46, 2003.

    Article  PubMed  CAS  Google Scholar 

  62. Yu, M. W., and X. G. Peng. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem. Int. Ed. 41:2368–2371, 2002.

    Article  CAS  Google Scholar 

  63. Yu, W. W., L. H. Qu, W. H. Guo, and X. G. Peng. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15:2854–2860, 2003.

    Article  CAS  Google Scholar 

  64. Zhong, X. H., Y. Y. Feng, W. Knoll, and M. Y. Han. Alloyed Zn x Cd1− x S nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc. 125:13559–13563, 2003.

    Article  PubMed  CAS  Google Scholar 

  65. Zhong, X. H., M. Y. Han, Z. Dong, T. J. White, and W. Knoll. Composition-tunable Zn x Cd1- x Se nanocrystals with high luminescence and stability. J. Am. Chem. Soc. 125:8589–8594, 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by grants from the National Institutes of Health (P20 GM072069, R01 CA108468, and R01 GM058173), the U.S. Department of Energy Genomes to Life Program, and the Georgia Cancer Coalition (GCC). One of the authors (A.M.S.) acknowledges the Whitaker Foundation for generous fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuming Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A.M., Ruan, G., Rhyner, M.N. et al. Engineering Luminescent Quantum Dots for In Vivo Molecular and Cellular Imaging. Ann Biomed Eng 34, 3–14 (2006). https://doi.org/10.1007/s10439-005-9000-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9000-9

Keywords

Navigation