Skip to main content
Log in

In vivo imaging of transplanted hepatocytes with a 1.5-T clinical MRI system—initial experience in mice

  • Experimental
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The feasibility of in vitro mature mouse hepatocyte labeling with a novel iron oxide particle was assessed and the ability of 1.5-T magnetic resonance imaging (MRI) to track labeled mouse hepatocytes in syngenic recipient livers following intraportal cell transplantation was tested. Mouse hepatocytes were incubated with anionic iron oxide nanoparticles at various iron concentrations. Cell viability was assessed and iron oxide particle uptake quantified. Labeled hepatocytes were intraportally injected into 20 mice, while unlabeled hepatocytes were injected into two mice. Liver T2 values, spleen-to-muscle relative signal intensity (RI spleen/muscle ), and liver-to-muscle relative signal intensity (RI liver/muscle ) on gradient-echo T2-weighted imaging after injection of either labeled or unlabeled hepatocytes were compared with an ANOVA test followed by Fisher’s a posteriori PLSD test. Livers, spleens and lungs were collected for histological analysis. Iron oxide particle uptake was saturable with a maximum iron content of 20 pg per cell and without viability alteration after 3 days of culture. Following labeled-cell transplantation, recipient livers showed well-defined nodular foci of low signal intensity on MRI—consistent with clusters of labeled hepatocytes on pathological analysis—combined with a significant decrease in both liver T2 values and liver-to-muscle RI liver/muscle (P = 0.01) with minimal T2 values demonstrated 8 days after transplantation. Conventional MRI can demonstrate the presence of transplanted iron-labeled mature hepatocytes in mouse liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Horslen SP, Fox IJ (2004) Hepatocyte transplantation. Transplantation 77:1481–1486

    Article  PubMed  Google Scholar 

  2. Fox IJ, Roy-Chowdhury J (2004) Hepatocyte transplantation. J Hepatol 40:878–886

    Article  PubMed  CAS  Google Scholar 

  3. Fox IJ, Chowdhury JR (2004) Hepatocyte transplantation. Am J Transplant 4(Suppl 6):7–13

    Article  PubMed  CAS  Google Scholar 

  4. Lee SW, Wang X, Chowdhury NR, Roy-Chowdhury J (2004) Hepatocyte transplantation: state of the art and strategies for overcoming existing hurdles. Ann Hepatol 3:48–53

    PubMed  Google Scholar 

  5. Grossman M, Raper SE, Wilson JM (1992) Transplantation of genetically modified autologous hepatocytes into nonhuman primates: feasibility and short-term toxicity. Hum Gene Ther 3:501–510

    PubMed  CAS  Google Scholar 

  6. Holzman MD, Rozga J, Neuzil DF, Griffin D, Moscioni AD, Demetriou AA (1993) Selective intraportal hepatocyte transplantation in analbuminemic and Gunn rats. Transplantation 55:1213–1219

    Article  PubMed  CAS  Google Scholar 

  7. Rozga J, Holzman M, Moscioni AD, Fujioka H, Morsiani E, Demetriou AA (1995) Repeated intraportal hepatocyte transplantation in analbuminemic rats. Cell Transplant 4:237–243

    Article  PubMed  CAS  Google Scholar 

  8. Muraca M, Gerunda G, Neri D, Vilei MT, Granato A, Feltracco P, Meroni M, Giron G, Burlina AB (2002) Hepatocyte transplantation as a treatment for glycogen storage disease type 1a. Lancet 359:317–318

    Article  PubMed  Google Scholar 

  9. Sokal EM, Smets F, Bourgois A, Van Maldergem L, Buts JP, Reding R, Bernard Otte J, Evrard V, Latinne D, Vincent MF, Moser A, Soriano HE (2003) Hepatocyte transplantation in a 4-year-old girl with peroxisomal biogenesis disease: technique, safety, and metabolic follow-up. Transplantation 76:735–738

    Article  PubMed  Google Scholar 

  10. Horslen SP, McCowan TC, Goertzen TC, Warkentin PI, Cai HB, Strom SC, Fox IJ (2003) Isolated hepatocyte transplantation in an infant with a severe urea cycle disorder. Pediatrics 111:1262–1267

    Article  PubMed  Google Scholar 

  11. Wilson JM, Grossman M, Wu CH, Chowdhury NR, Wu GY, Chowdhury JR (1992) Hepatocyte-directed gene transfer in vivo leads to transient improvement of hypercholesterolemia in low density lipoprotein receptor-deficient rabbits. J Biol Chem 267:963–967

    PubMed  CAS  Google Scholar 

  12. Chowdhury JR, Grossman M, Gupta S, Chowdhury NR, Baker JR Jr, Wilson JM (1991) Long-term improvement of hypercholesterolemia after ex vivo gene therapy in LDLR-deficient rabbits. Science 254:1802–1805

    Article  PubMed  CAS  Google Scholar 

  13. Wang J, Li W, Min J, Ou Q, Chen J, Song E (2004) Intrasplenic transplantation of allogeneic hepatocytes modified by BCL-2 gene protects rats from acute liver failure. Transplant Proc 36:2924–2926

    Article  PubMed  CAS  Google Scholar 

  14. Sigot V, Mediavilla MG, Furno G, Rodriguez JV, Guibert EE (2004) A simple and effective method to improve intrasplenic rat hepatocyte transplantation. Cell Transplant 13:775–781

    PubMed  Google Scholar 

  15. Ponder KP, Gupta S, Leland F, Darlington G, Finegold M, DeMayo J, Ledley FD, Chowdhury JR, Woo SL (1991) Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation. Proc Natl Acad Sci USA 88:1217–1221

    Article  PubMed  CAS  Google Scholar 

  16. Allen KJ, Soriano HE (2001) Liver cell transplantation: the road to clinical application. J Lab Clin Med 138:298–312

    Article  PubMed  CAS  Google Scholar 

  17. Grompe M (2006) Principles of therapeutic liver repopulation. J Inherit Metab Dis 29:421–425

    Article  PubMed  Google Scholar 

  18. Andreoletti M, Loux N, Vons C, Nguyen TH, Lorand I, Mahieu D, Simon L, Di Rico V, Vingert B, Chapman J, Briand P, Schwall R, Hamza J, Capron F, Bargy F, Franco D, Weber A (2001) Engraftment of autologous retrovirally transduced hepatocytes after intraportal transplantation into nonhuman primates: implication for ex vivo gene therapy. Hum Gene Ther 12:169–179

    Article  PubMed  CAS  Google Scholar 

  19. Vons C, Loux N, Simon L, Mahieu-Caputo D, Dagher I, Andreoletti M, Borgnon J, Di Rico V, Bargy F, Capron F, Weber A, Franco D (2001) Transplantation of hepatocytes in nonhuman primates: a preclinical model for the treatment of hepatic metabolic diseases. Transplantation 72:811–818

    Article  PubMed  CAS  Google Scholar 

  20. Ferry N, Duplessis O, Houssin D, Danos O, Heard JM (1991) Retroviral-mediated gene transfer into hepatocytes in vivo. Proc Natl Acad Sci USA 88:8377–8381

    Article  PubMed  CAS  Google Scholar 

  21. Weissleder R, Cheng HC, Bogdanova A, Bogdanov A Jr (1997) Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging 7:258–263

    Article  PubMed  CAS  Google Scholar 

  22. Moore A, Marecos E, Bogdanov A Jr, Weissleder R (2000) Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214:568–574

    PubMed  CAS  Google Scholar 

  23. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  PubMed  CAS  Google Scholar 

  24. Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147

    Article  PubMed  CAS  Google Scholar 

  25. Arbab AS, Bashaw LA, Miller BR, Jordan EK, Bulte JW, Frank JA (2003) Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation 76:1123–1130

    Article  PubMed  CAS  Google Scholar 

  26. Matuszewski L, Persigehl T, Wall A, Schwindt W, Tombach B, Fobker M, Poremba C, Ebert W, Heindel W, Bremer C (2005) Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology 235:155–161

    Article  PubMed  Google Scholar 

  27. Smirnov P, Lavergne E, Gazeau F, Lewin M, Boissonnas A, Doan BT, Gillet B, Combadiere C, Combadiere B, Clement O (2006) In vivo cellular imaging of lymphocyte trafficking by MRI: A tumor model approach to cell-based anticancer therapy. Magn Reson Med 56:498–508

    Article  PubMed  CAS  Google Scholar 

  28. Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24:1001–1011

    Article  PubMed  CAS  Google Scholar 

  29. Seglen PO (1976) Preparation of isolated rat liver cells. Methods Cell Biol 13:29–83

    Article  PubMed  CAS  Google Scholar 

  30. Billotey C, Wilhelm C, Devaud M, Bacri JC, Bittoun J, Gazeau F (2003) Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn Reson Med 49:646–654

    Article  PubMed  CAS  Google Scholar 

  31. Wilhelm C, Gazeau F, Bacri JC (2002) Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur Biophys J 31:118–125

    Article  PubMed  CAS  Google Scholar 

  32. Schulze E, Ferrucci JT Jr, Poss K, Lapointe L, Bogdanova A, Weissleder R (1995) Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro. Invest Radiol 30:604–610

    Article  PubMed  CAS  Google Scholar 

  33. Koch AM, Reynolds F, Kircher MF, Merkle HP, Weissleder R, Josephson L (2003) Uptake and metabolism of a dual fluorochrome Tat-nanoparticle in HeLa cells. Bioconjug Chem 14:1115–1121

    Article  PubMed  CAS  Google Scholar 

  34. Daldrup-Link HE, Rudelius M, Piontek G, Metz S, Brauer R, Debus G, Corot C, Schlegel J, Link TM, Peschel C, Rummeny EJ, Oostendorp RA (2005) Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment. Radiology 234:197–205

    Article  PubMed  Google Scholar 

  35. Smirnov P, Gazeau F, Lewin M, Bacri JC, Siauve N, Vayssettes C, Cuenod CA, Clement O (2004) In vivo cellular imaging of magnetically labeled hybridomas in the spleen with a 1.5-T clinical MRI system. Magn Reson Med 52:73–79

    Article  PubMed  Google Scholar 

  36. Zhang Z, van den Bos EJ, Wielopolski PA, de Jong-Popijus M, Duncker DJ, Krestin GP (2004) High-resolution magnetic resonance imaging of iron-labeled myoblasts using a standard 1.5-T clinical scanner. Magma 17:201–209

    Article  PubMed  CAS  Google Scholar 

  37. Cahill KS, Germain S, Byrne BJ, Walter GA (2004) Non-invasive analysis of myoblast transplants in rodent cardiac muscle. Int J Cardiovasc Imaging 20:593–598

    Article  PubMed  Google Scholar 

  38. Riviere C, Boudghene FP, Gazeau F, Roger J, Pons JN, Laissy JP, Allaire E, Michel JB, Letourneur D, Deux JF (2005) Iron oxide nanoparticle-labeled rat smooth muscle cells: cardiac MR imaging for cell graft monitoring and quantitation. Radiology 235:959–967

    Article  PubMed  Google Scholar 

  39. Yano S, Kuroda S, Shichinohe H, Hida K, Iwasaki Y (2005) Do bone marrow stromal cells proliferate after transplantation into mice cerebral infarct?-a double labeling study. Brain Res 1065:60–67

    Article  PubMed  CAS  Google Scholar 

  40. Daldrup-Link HE, Meier R, Rudelius M, Piontek G, Piert M, Metz S, Settles M, Uherek C, Wels W, Schlegel J, Rummeny EJ (2005) In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur Radiol 15:4–13

    Article  PubMed  Google Scholar 

  41. Brillet PY, Gazeau F, Luciani A, Bessoud B, Cuenod CA, Siauve N, Pons JN, Poupon J, Clement O (2005) Evaluation of tumoral enhancement by superparamagnetic iron oxide particles: comparative studies with ferumoxtran and anionic iron oxide nanoparticles. Eur Radiol 15:1369–1377

    Article  PubMed  Google Scholar 

  42. Daldrup-Link HE, Rudelius M, Oostendorp RA, Jacobs VR, Simon GH, Gooding C, Rummeny EJ (2005) Comparison of iron oxide labeling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXX. Acad Radiol 12:502–510

    Article  PubMed  Google Scholar 

  43. Bos C, Delmas Y, Desmouliere A, Solanilla A, Hauger O, Grosset C, Dubus I, Ivanovic Z, Rosenbaum J, Charbord P, Combe C, Bulte JW, Moonen CT, Ripoche J, Grenier N (2004) In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 233:781–789

    Article  PubMed  Google Scholar 

  44. Shapiro EM, Sharer K, Skrtic S, Koretsky AP (2006) In vivo detection of single cells by MRI. Magn Reson Med 55:242–249

    Article  PubMed  Google Scholar 

  45. Schneider A, Attaran M, Gratz KF, Bleck JS, Winkler M, Manns MP, Ott M (2003) Intraportal infusion of 99mtechnetium-macro-aggregrated albumin particles and hepatocytes in rabbits: assessment of shunting and portal hemodynamic changes. Transplantation 75:296–302

    Article  PubMed  CAS  Google Scholar 

  46. Muraca M, Neri D, Parenti A, Feltracco P, Granato A, Vilei MT, Ferraresso C, Ballarin R, Zanusso GE, Giron G, Rozga J, Gerunda G (2002) Intraportal hepatocyte transplantation in the pig: hemodynamic and histopathological study. Transplantation 73:890–896

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the following grants: Canceropole Ile de France—INCa—2004; ACI Neurosciences 03-5-295; GIS Maladies Rares A 03 087 DS.The authors wish to thank the MR team of the Imaging Department at CHU Henri Mondor, Faculte de Medecine Paris XII, Creteil, France, and especially Dr Pierre Brugières (MD) and Pierre Zerbib for their contribution in MR experiments. We also thank Dr Catherine Vayssettes for her help in animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Clement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luciani, A., Parouchev, A., Smirnov, P. et al. In vivo imaging of transplanted hepatocytes with a 1.5-T clinical MRI system—initial experience in mice. Eur Radiol 18, 59–69 (2008). https://doi.org/10.1007/s00330-007-0750-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-007-0750-7

Keywords

Navigation