Skip to main content

Advertisement

Log in

Evaluation of tumoral enhancement by superparamagnetic iron oxide particles: comparative studies with ferumoxtran and anionic iron oxide nanoparticles

  • Experimental
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

This study was designed to compare tumor enhancement by superparamagnetic iron oxide particles, using anionic iron oxide nanoparticles (AP) and ferumoxtran. In vitro, relaxometry and media with increasing complexity were used to assess the changes in r2 relaxivity due to cellular internalization. In vivo, 26 mice with subcutaneously implanted tumors were imaged for 24 h after injection of particles to describe kinetics of enhancement using T1 spin echo, T2 spin echo, and T2 fast spin echo sequences. In vitro, the r2 relaxivity decreased over time (0–4 h) when AP were uptaken by cells. The loss of r2 relaxivity was less pronounced with long (Hahn Echo) than short (Carr–Purcell–Meiboom–Gill) echo time sequences. In vivo, our results with ferumoxtran showed an early T2 peak (1 h), suggesting intravascular particles and a second peak in T1 (12 h), suggesting intrainterstitial accumulation of particles. With AP, the late peak (24 h) suggested an intracellular accumulation of particles. In vitro, anionic iron oxide nanoparticles are suitable for cellular labeling due to a high cellular uptake. Conversely, in vivo, ferumoxtran is suitable for passive targeting of tumors due to a favorable biodistribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331

    Article  CAS  PubMed  Google Scholar 

  2. Bellin MF, Roy C, Kinkel K, Thoumas D, Zaim S, Vanel D, Tuchmann C, Richard F, Jacqmin D, Delcourt A, Challier E, Lebret T, Cluzel P (1998) Lymph node metastases: safety and effectiveness of MR imaging with ultrasmall superparamagnetic iron oxide particles—initial clinical experience. Radiology 207:799–808

    CAS  PubMed  Google Scholar 

  3. Nguyen BC, Stanford W, Thompson BH, Rossi NP, Kernstine KH, Kern JA, Robinson RA, Amorosa JK, Mammone JF, Outwater EK (1999) Multicenter clinical trial of ultrasmall superparamagnetic iron oxide in the evaluation of mediastinal lymph nodes in patients with primary lung carcinoma. J Magn Reson Imaging 10:468–473

    Google Scholar 

  4. Saini S, Edelman RR, Sharma P, Li W, Mayo-Smith W, Slater GJ, Eisenberg PJ, Hahn PF (1995) Blood-pool MR contrast material for detection and characterization of focal hepatic lesions: initial clinical experience with ultrasmall superparamagnetic iron oxide (AMI-227). Am J Roentgenol 164:1147–1152

    Google Scholar 

  5. Reimer P, Tombach B (1998) Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur Radiol 8:1198–1204

    Article  CAS  PubMed  Google Scholar 

  6. Turetschek K, Huber S, Floyd E, Helbich T, Roberts TP, Shames DM, Tarlo KS, Wendland MF, Brasch RC (2001) MR imaging characterization of microvessels in experimental breast tumors by using a particulate contrast agent with histopathologic correlation. Radiology 218:562–569

    CAS  PubMed  Google Scholar 

  7. Karczmar GS, Fan X, Al-Hallaq HA, Zamora M, River JN, Rinker-Schaeffer C, Zaucha M, Tarlo K, Kellar K (2000) Uptake of a superparamagnetic contrast agent imaged by MR with high spectral and spatial resolution. Magn Reson Med 43:633–639

    Google Scholar 

  8. Metz S, Bonaterra G, Rudelius M, Settles M, Rummeny EJ, Daldrup-Link HE (2004) Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14 (10):1851–1858

    Article  Google Scholar 

  9. Yeh TC, Zhang W, Ildstad ST, Ho C (1995) In vivo dynamic MRI tracking of rat T-cells labeled with superparamagnetic iron-oxide particles. Magn Reson Med 33:200–208

    Google Scholar 

  10. Weissleder R, Cheng HC, Bogdanova A, Bogdanov A Jr (1997) Magnetically labeled cells can be detected by MR imaging J Magn Reson Imaging 7:258–263

    CAS  PubMed  Google Scholar 

  11. Moore A, Weissleder R, Bogdanov A Jr (1997) Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging 7:1140–1145

    Google Scholar 

  12. Moore A, Marecos E, Bogdanov A Jr, Weissleder R (2000) Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214:568–574

    Google Scholar 

  13. Billotey C, Wilhelm C, Devaud M, Bacri JC, Bittoun J, Gazeau F (2003) Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn Reson Med 49:646–654

    Google Scholar 

  14. Guimaraes R, Clement O, Bittoun J, Carnot F, Frija G (1994) MR lymphography with superparamagnetic iron nanoparticles in rats: pathologic basis for contrast enhancement. Am J Roentgenol 162:201–207

    Google Scholar 

  15. Bjerner T, Ericsson A, Wikstrom G, Johansson L, Nilsson S, Ahlstrom H, Hemmingsson A (2000) Evaluation of nonperfused myocardial ischemia with MRI and an intravascular USPIO contrast agent in an ex vivo pig model. J Magn Reson Imaging 12:866–872

    Article  Google Scholar 

  16. Jain RK (2001) Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J Control Release 74:7–25

    Article  Google Scholar 

  17. Bulte JM, Vymazal J, Brooks RA, Pierpaoli C, Frank JA (1993) Frequency dependence of MR relaxation times. II. Iron oxides. J Magn Reson Imaging 3:641–648

    Google Scholar 

  18. Fauconnier N, Pons JN, Roger J, Bee A (1997) Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J Colloid Interface Sci 194:427–433

    Article  Google Scholar 

  19. Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24:1001–1011

    Article  Google Scholar 

  20. Wilhelm C, Gazeau F, Bacri JC (2002) Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur Biophys J 31:118–125

    Article  Google Scholar 

  21. Brillet PY, Clément O, Bessoud B, Luciani A, Siauve N, Cuénod CA (2003) Use of two superparamagnetic iron oxide particles (SPIO) for tumoral imaging: in vitro and in vivo studies. Eur Radiol 13(Suppl 1):439

    Google Scholar 

  22. Raynal I, Prigent P, Peyramaure S, Najid A, Rebuzzi C, Corot C (2004) Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol 39:56–63

    Article  Google Scholar 

  23. Bulte JM, Vymazal J, Brooks RA, Pierpaoli C, Frank JA (1993) Frequency dependence of MR relaxation times. Iron oxides. J Magn Reson Imaging 3:641–648

    Google Scholar 

  24. Bengele HH, Palmacci S, Rogers J, Jung CW, Crenshaw J, Josephson L (1994) Biodistribution of an ultrasmall superparamagnetic iron oxide colloid, BMS 180549, by different routes of administration. Magn Reson Imaging 12:433–442

    Article  Google Scholar 

  25. McLachlan SJ, Morris MR, Lucas MA, Fisco RA, Eakins MN, Fowler DR, Scheetz RB, Olukotun AY (1994) Phase I clinical evaluation of a new iron oxide MR contrast agent. J Magn Reson Imaging 4:301–307

    CAS  PubMed  Google Scholar 

  26. Wilhelm C, Gazeau F, Roger J, Pons JN, Bacri JC (2002) Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir 18:8148–8155

    Article  CAS  Google Scholar 

  27. Iannone A, Federico M, Tomasi A, Magin RL, Casasco A, Calligaro A, Vannini V (1992) Detection and quantitation in rat tissues of the superparamagnetic magnetic resonance contrast agent dextran magnetite as demonstrated by electron spin resonance spectroscopy. Invest Radiol 27:450–455

    Google Scholar 

  28. Majumdar S, Zoghbi SS, Gore JC (1989) The influence of pulse sequence on the relaxation effects of superparamagnetic iron oxide contrast agents. Magn Reson Med 10:289–301

    Google Scholar 

  29. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    CAS  PubMed  Google Scholar 

  30. Mitchell P (2001) Turning the spotlight on cellular imaging. Nat Biotechnol 19:1013–1017

    Google Scholar 

  31. Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, McCarthy T, McCarthy DW, Gambhir SS (2002) Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci USA 99:3030–3035

    Article  Google Scholar 

  32. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  CAS  PubMed  Google Scholar 

  33. Bulte JW, Zhang S, van Gelderen P, Herynek V, Jordan EK, Duncan ID, Frank JA (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 96:15256–15361

    Google Scholar 

  34. Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, Bryant LH Jr, Bulte JW (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487

    Google Scholar 

  35. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612

    Article  Google Scholar 

  36. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P-Y. Brillet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brillet, PY., Gazeau, F., Luciani, A. et al. Evaluation of tumoral enhancement by superparamagnetic iron oxide particles: comparative studies with ferumoxtran and anionic iron oxide nanoparticles. Eur Radiol 15, 1369–1377 (2005). https://doi.org/10.1007/s00330-004-2586-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-004-2586-8

Keywords

Navigation