Skip to main content
Log in

Assessment of occlusive arterial disease of abdominal aorta and lower extremities arteries: value of multidetector CT angiography using an adaptive acquisition method

  • Vascular-Interventional
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

We evaluated 16-detector-row CT in the assessment of occlusive peripheral arterial disease (PAD) of the abdominal aorta and lower extremities using an adaptive method of acquisition to optimise arterial enhancement especially for the distal foot arteries. Thirty-four patients underwent transcatheter angiography (TCA) and CT angiography within 15 days. For each patient, table speed and rotation were selected according to the calculated optimal transit time of contrast material obtained after a single bolus test and two dynamic acquisitions at aorta and popliteal arteries. Analysis included image quality and detection of stenosis equal or greater than 50% on a patient basis and on an arterial segment basis. Sensitivity and specificity of CT were calculated with the TCA considered as the standard of reference. CT was conclusive in all segments with no technical failures even in difficult cases with occluded bypasses and aneurysms. On patient-basis analysis, the overall sensitivity and specificity to detect significant stenosis greater than 50% were both 100%. Segmental analysis shows high values of sensitivity and specificity ranging from 91 to 100% and from 81 to 100%, respectively, including distal pedal arteries. Sixteen-detector-row CT angiography using an adaptive acquisition improves the image quality and provides a reliable non-invasive technique to assess occlusive peripheral arterial disease, including distal foot arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Malden ES, Picus D, Vesely TM, Darcy MD, Hicks ME (1994) Peripheral vascular disease: evaluation with stepping dsa and conventional screen-film angiography. Radiology 191:149–153

    PubMed  CAS  Google Scholar 

  2. Rubin GD, Zarins CK (1995) MR and spiral/helical CT imaging of lower extremity occlusive disease. Surg Clin North Am 75:607–619

    PubMed  CAS  Google Scholar 

  3. Reimer P, Landwehr P (1998) Non-invasive vascular imaging of peripheral vessels. Eur Radiol 8:858–872

    Article  PubMed  CAS  Google Scholar 

  4. Fleischmann D, Rubin GD (2005) Quantification of intravenously administered contrast medium transit through the peripheral arteries: implications for CT angiography. Radiology 236:1076–1082

    Article  PubMed  Google Scholar 

  5. Qanadli SD, Chiappori V, Kelekis A (2004) Multislice computed tomography of peripheral arterial disease: new approach to optimize vascular opacification with 16-row platform. Eur Radiol 14(Suppl 2):b806

    Google Scholar 

  6. Rieker O, Duber C, Neufang A, Pitton M, Schweden F, Thelen M (1997) CT angiography versus intraarterial digital subtraction angiography for assessment of aortoiliac occlusive disease. AJR Am J Roentgenol 169:1133–1138

    PubMed  CAS  Google Scholar 

  7. Lawrence JA, Kim D, Kent KC, Stehling MK, Rosen MP, Raptopoulos V (1995) Lower extremity spiral CT angiography versus catheter angiography. Radiology 194:903–908

    PubMed  CAS  Google Scholar 

  8. Ho KY, Leiner T, de Haan MW, Kessels AG, Kitslaar PJ, Van Engelshoven JM (1998) Peripheral vascular tree stenoses: Eevaluation with moving-bed infusion-tracking MR angiography. Radiology 206:683–692

    PubMed  CAS  Google Scholar 

  9. Ofer A, Nitecki SS, Linn S, Epelman M, Fischer D, Karram T, Litmanovich D, Schwartz H, Hoffman A, Engel A (2003) Multidetector CT angiography of peripheral vascular disease: A prospective comparison with intraarterial digital subtraction angiography. AJR Am J Roentgenol 180:719–724

    PubMed  Google Scholar 

  10. Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33:363–374

    Article  PubMed  CAS  Google Scholar 

  11. Rubin GD, Schmidt AJ, Logan LJ, Sofilos MC (2001) Multi-detector row CT angiography of lower extremity arterial inflow and runoff: initial experience. Radiology 221:146–158

    Article  PubMed  CAS  Google Scholar 

  12. Fleischmann D, Hallett RL, Rubin GD (2006) CT angiography of peripheral arterial disease. J Vasc Interv Radiol 17:3–26

    Article  PubMed  Google Scholar 

  13. Martin ML, Tay KH, Flak B, Fry PD, Doyle DL, Taylor DC, Hsiang YN, Machan LS (2003) Multidetector CT angiography of the aortoiliac system and lower extremities: a prospective comparison with digital subtraction angiography. AJR Am J Roentgenol 180:1085–1091

    PubMed  Google Scholar 

  14. Ota H, Takase K, Igarashi K, Chiba Y, Haga K, Saito H, Takahashi S (2004) MDCT compared with digital subtraction angiography for assessment of lower extremity arterial occlusive disease: importance of reviewing cross-sectional images. AJR Am J Roentgenol 182:201–209

    PubMed  Google Scholar 

  15. Catalano C, Fraioli F, Laghi A, Napoli A, Bezzi M, Pediconi F, Danti M, Nofroni I, Passariello R (2004) infrarenal aortic and lower-extremity arterial disease: diagnostic performance of multi-detector row CT angiography. Radiology 231:555–563

    Article  PubMed  Google Scholar 

  16. Rubin GD, Shiau MC, Schmidt AJ, Fleischmann D, Logan L, Leung AN, Jeffrey RB, Napel S (1999) Computed tomographic angiography: historical perspective and new state-of-the-art using multi detector-row helical computed tomography. J Comput Assist Tomogr 23(Suppl 1):s83–s90

    PubMed  Google Scholar 

  17. Fraioli F, Catalano C, Napoli A, Francone M, Venditti F, Danti M, Pediconi F, Passariello R (2006) Low-dose multidetector-row CT angiography of the infra-renal aorta and lower extremity vessels: image quality and diagnostic accuracy in comparison with standard DSA. Eur Radiol 16:137–146

    Article  PubMed  Google Scholar 

  18. Wintersperger B, Jakobs T, Herzog P, Schaller S, Nikolaou K, Suess C, Weber C, Reiser M, Becker C (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur radiol 15:334–341

    Article  PubMed  CAS  Google Scholar 

  19. Willmann JK, Baumert B, Schertler T, Wildermuth S, Pfammatter T, Verdun FR, Seifert B, Marincek B, Bohm T (2005) Aortoiliac and lower extremity arteries assessed with 16-detector row CT angiography: prospective comparison with digital subtraction angiography. Radiology 236:1083–1093

    Article  PubMed  Google Scholar 

  20. Ouwendijk R, Kock Mc, Van Dijk LC, Van Sambeek MR, Stijnen T, Hunink MG (2006) vessel wall calcifications at multi-detector row CT angiography in patients with peripheral arterial disease: effect on clinical utility and clinical predictors. Radiology 241:603–608

    Article  PubMed  Google Scholar 

  21. Raptopoulos V, Rosen MP, Kent KC, Kuestner LM, Sheiman RG, Pearlman JD (1996) Sequential helical CT angiography of aortoiliac disease. AJR Am J Roentgenol 166:1347–1354

    PubMed  CAS  Google Scholar 

  22. Rofsky NM, Adelman MA (2000) MR angiography in the evaluation of atherosclerotic peripheral vascular disease. Radiology 214:325–338

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Qanadli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laswed, T., Rizzo, E., Guntern, D. et al. Assessment of occlusive arterial disease of abdominal aorta and lower extremities arteries: value of multidetector CT angiography using an adaptive acquisition method. Eur Radiol 18, 263–272 (2008). https://doi.org/10.1007/s00330-007-0749-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-007-0749-0

Keywords

Navigation