Skip to main content

Computed Tomography Angiography (CTA)

  • Chapter
  • First Online:
Imaging in Peripheral Arterial Disease

Abstract

Multidetector CTA (MDCTA) of the peripheral arteries has high accuracy for detection of steno-occlusive diseases when compared with DSA. Its advantages over DSA include minimal invasiveness, reduced volume of contrast material, shorter scan times, and fast data acquisition. Other advantages include three-dimensional (3D) volumetric data analysis and display, unlike DSA which only provides a luminogram, visualization of the vessel walls, and extravascular tissues. Furthermore CTA is more reliable than MRA when assessing patency of arteries with stents and has higher spatial resolution. This chapter reviews the role of CTA for the evaluation and posttreatment follow-up of patients with PAD involving the upper and lower extremities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ota H, Takase K, Igarashi K, et al. MDCT compared with digital subtraction angiography for assessment of lower extremity arterial occlusive disease: importance of reviewing cross-sectional images. AJR Am J Roentgenol. 2004;182(1):201–9. https://doi.org/10.2214/ajr.182.1.1820201.

    Article  PubMed  Google Scholar 

  2. Writing Committee Members, Gerhard-Herman MD, Gornik HL, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary. Vasc Med. 2017;22(3):NP1–NP43. https://doi.org/10.1177/1358863X17701592.

    Article  Google Scholar 

  3. Albrecht T, Foert E, Holtkamp R, et al. 16-MDCT angiography of aortoiliac and lower extremity arteries: comparison with digital subtraction angiography. AJR Am J Roentgenol. 2007;189(3):702–11. doi: 189/3/702 [pii].

    Article  Google Scholar 

  4. Meyer BC, Werncke T, Hopfenmuller W, Raatschen HJ, Wolf KJ, Albrecht T. Dual energy CT of peripheral arteries: effect of automatic bone and plaque removal on image quality and grading of stenoses. Eur J Radiol. 2008;68(3):414–22. https://doi.org/10.1016/j.ejrad.2008.09.016.

    Article  CAS  PubMed  Google Scholar 

  5. Willmann JK, Wildermuth S. Multidetector-row CT angiography of upper- and lower-extremity peripheral arteries. Eur Radiol. 2005;15(Suppl 4):D3–9.

    Article  Google Scholar 

  6. Willmann JK, Mayer D, Banyai M, et al. Evaluation of peripheral arterial bypass grafts with multi-detector row CT angiography: comparison with duplex US and digital subtraction angiography. Radiology. 2003;229(2):465–74. https://doi.org/10.1148/radiol.2292021123.

    Article  PubMed  Google Scholar 

  7. Rubin GD, Shiau MC, Schmidt AJ, et al. Computed tomographic angiography: historical perspective and new state-of-the-art using multi detector-row helical computed tomography. J Comput Assist Tomogr. 1999;23(Suppl 1):S83–90.

    PubMed  Google Scholar 

  8. Prokop M. Multislice CT angiography. Eur J Radiol. 2000;36(2):86–96.

    Article  CAS  Google Scholar 

  9. Ambrose J, Hounsfield G. Computerized transverse axial tomography. Br J Radiol. 1973;46(542):148–9.

    CAS  PubMed  Google Scholar 

  10. Kalender WA, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology. 1990;176(1):181–3.

    Article  CAS  Google Scholar 

  11. Kalender WA, Polacin A. Physical performance characteristics of spiral CT scanning. Med Phys. 1991;18(5):910–5.

    Article  CAS  Google Scholar 

  12. Hu H, He HD, Foley WD, Fox SH. Four multidetector-row helical CT: image quality and volume coverage speed. Radiology. 2000;215(1):55–62.

    Article  CAS  Google Scholar 

  13. Klingenbeck-Regn K, Schaller S, Flohr T, Ohnesorge B, Kopp AF, Baum U. Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol. 1999;31(2):110–24.

    Article  CAS  Google Scholar 

  14. Fleischmann D, Chin AS, Molvin L, Wang J, Hallett R. Computed tomography angiography: a review and technical update. Radiol Clin N Am. 2016;54(1):1–12. https://doi.org/10.1016/j.rcl.2015.09.002.

    Article  PubMed  Google Scholar 

  15. Rubin GD, Walker PJ, Dake MD, et al. Three-dimensional spiral computed tomographic angiography: an alternative imaging modality for the abdominal aorta and its branches. J Vasc Surg. 1993;18(4):656–64; discussion 665.

    Article  CAS  Google Scholar 

  16. Liang Y, Kruger RA. Dual-slice spiral versus single-slice spiral scanning: comparison of the physical performance of two computed tomography scanners. Med Phys. 1996;23(2):205–20.

    Article  CAS  Google Scholar 

  17. Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG. Technical principles of dual source CT. Eur J Radiol. 2008;68(3):362–8. https://doi.org/10.1016/j.ejrad.2008.08.013.

    Article  PubMed  Google Scholar 

  18. Johnson TR, Krauss B, Sedlmair M, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17(6):1510–7. https://doi.org/10.1007/s00330-006-0517-6.

    Article  PubMed  Google Scholar 

  19. Johnson PT, Fishman EK. Computed tomography angiography of the renal and mesenteric vasculature: concepts and applications. Semin Roentgenol. 2011;46(2):115–24. https://doi.org/10.1053/j.ro.2010.08.001.

    Article  PubMed  Google Scholar 

  20. Tran DN, Straka M, Roos JE, Napel S, Fleischmann D. Dual-energy CT discrimination of iodine and calcium: experimental results and implications for lower extremity CT angiography. Acad Radiol. 2009;16(2):160–71. https://doi.org/10.1016/j.acra.2008.09.004.

    Article  PubMed  Google Scholar 

  21. Hagspiel KD. Increasing role of dual-energy CT in noninvasive vascular imaging. J Vasc Interv Radiol. 2017;28(9):1267–8. doi: S1051-0443(17)30662-0 [pii].

    Article  Google Scholar 

  22. Wichmann JL, Gillott MR, De Cecco CN, et al. Dual-energy computed tomography angiography of the lower extremity runoff: impact of noise-optimized virtual monochromatic imaging on image quality and diagnostic accuracy. Investig Radiol. 2016;51(2):139–46. https://doi.org/10.1097/RLI.0000000000000216.

    Article  Google Scholar 

  23. Fleischmann D, Kamaya A. Optimal vascular and parenchymal contrast enhancement: the current state of the art. Radiol Clin N Am. 2009;47(1):13–26. https://doi.org/10.1016/j.rcl.2008.10.009.

    Article  PubMed  Google Scholar 

  24. Bae KT, Heiken JP, Brink JA. Aortic and hepatic peak enhancement at CT: effect of contrast medium injection rate – pharmacokinetic analysis and experimental porcine model. Radiology. 1998;206(2):455–64. https://doi.org/10.1148/radiology.206.2.9457200.

    Article  CAS  PubMed  Google Scholar 

  25. Zeman RK, Silverman PM, Vieco PT, Costello P. CT angiography. AJR Am J Roentgenol. 1995;165(5):1079–88.

    Article  CAS  Google Scholar 

  26. Napoli A, Fleischmann D, Chan FP, et al. Computed tomography angiography: state-of-the-art imaging using multidetector-row technology. J Comput Assist Tomogr. 2004;28(Suppl 1):S32–45. doi: 00004728-200407001-00008 [pii].

    Article  Google Scholar 

  27. Tricarico F, Hlavacek AM, Schoepf UJ, et al. Cardiovascular CT angiography in neonates and children: image quality and potential for radiation dose reduction with iterative image reconstruction techniques. Eur Radiol. 2013;23(5):1306–15. https://doi.org/10.1007/s00330-012-2734-5.

    Article  PubMed  Google Scholar 

  28. Stocker TJ, Deseive S, Leipsic J, et al. Reduction in radiation exposure in cardiovascular computed tomography imaging: results from the PROspective multicenter registry on radiaTion dose estimates of cardiac CT angIOgraphy iN daily practice in 2017 (PROTECTION VI). Eur Heart J. 2018;39(41):3715–23. https://doi.org/10.1093/eurheartj/ehy546.

    Article  PubMed  Google Scholar 

  29. Rubin GD, Dake MD, Napel S, et al. Spiral CT of renal artery stenosis: comparison of three-dimensional rendering techniques. Radiology. 1994;190(1):181–9.

    Article  CAS  Google Scholar 

  30. Johnson PT, Schneider R, Lugo-Fagundo C, Johnson MB, Fishman EK. MDCT angiography with 3D rendering: a novel cinematic rendering algorithm for enhanced anatomic detail. AJR Am J Roentgenol. 2017;209(2):309–12. https://doi.org/10.2214/AJR.17.17903.

    Article  PubMed  Google Scholar 

  31. He C, Yang JG, Li YM, et al. Comparison of lower extremity atherosclerosis in diabetic and non-diabetic patients using multidetector computed tomography. BMC Cardiovasc Disord. 2014;14:125-2261-14-125. https://doi.org/10.1186/1471-2261-14-125.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Saremi F, Achenbach S. Coronary plaque characterization using CT. AJR Am J Roentgenol. 2015;204(3):W249–60. https://doi.org/10.2214/AJR.14.13760.

    Article  PubMed  Google Scholar 

  33. Rubin GD, Schmidt AJ, Logan LJ, Sofilos MC. Multi-detector row CT angiography of lower extremity arterial inflow and runoff: initial experience. Radiology. 2001;221(1):146–58.

    Article  CAS  Google Scholar 

  34. Funama Y, Oda S, Utsunomiya D, et al. Coronary artery stent evaluation by combining iterative reconstruction and high-resolution kernel at coronary CT angiography. Acad Radiol. 2012;19(11):1324–31. https://doi.org/10.1016/j.acra.2012.06.013.

    Article  PubMed  Google Scholar 

  35. Riffel P, Haubenreisser H, Higashigaito K, et al. Combined static and dynamic computed tomography angiography of peripheral artery occlusive disease: comparison with magnetic resonance angiography. Cardiovasc Intervent Radiol. 2018;41(8):1205–13. https://doi.org/10.1007/s00270-018-1911-6.

    Article  PubMed  Google Scholar 

  36. Fleischmann D, Hellinger J, Napoli A. Multidetector-row CT angiography of peripheral arteries: imaging upper-extremity and lower-extremity vascular disease. In: Multidetector-row CT angiography. Berlin, Heidelberg: Springer; 2005. p. 187–98.

    Google Scholar 

  37. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FGR. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45(Suppl S):S5-67; S5–67. http://www.ncbi.nlm.nih.gov/pubmed/17223489.

    PubMed  Google Scholar 

  38. Met R, Bipat S, Legemate DA, Reekers JA, Koelemay MJW. Diagnostic performance of computed tomography angiography in peripheral arterial disease: a systematic review and meta-analysis. JAMA. 2009;301(4):415–24.

    Article  CAS  Google Scholar 

  39. Shareghi S, Gopal A, Gul K, et al. Diagnostic accuracy of 64 multidetector computed tomographic angiography in peripheral vascular disease. Catheter Cardiovasc Interv. 2009;NA–NA; NA–NA. https://doi.org/10.1002/ccd.22228.

  40. Napoli A, Anzidei M, Zaccagna F, et al. Peripheral arterial occlusive disease: diagnostic performance and effect on therapeutic management of 64-section CT angiography. Radiology. 2011;261(3):976–86. https://doi.org/10.1148/radiol.11103564.

    Article  PubMed  Google Scholar 

  41. Lim JC, Ranatunga D, Owen A, et al. Multidetector (64+) computed tomography angiography of the lower limb in symptomatic peripheral arterial disease: assessment of image quality and accuracy in a tertiary care setting. J Comput Assist Tomogr. 2017;41(2):327–33. https://doi.org/10.1097/RCT.0000000000000494.

    Article  PubMed  Google Scholar 

  42. Kau T, Eicher W, Reiterer C, et al. Dual-energy CT angiography in peripheral arterial occlusive disease accuracy of maximum intensity projections in clinical routine and subgroup analysis. Eur Radiol. 2011;21(8):1677–86. http://www.springerlink.com/index/10.1007/s00330-011-2099-1.

    Article  Google Scholar 

  43. De Santis D, De Cecco CN, Schoepf UJ, et al. Modified calcium subtraction in dual-energy CT angiography of the lower extremity runoff: impact on diagnostic accuracy for stenosis detection. Eur Radiol. 2019; https://doi.org/10.1007/s00330-019-06032-y.

    Article  Google Scholar 

  44. Sommer WH, Helck A, Bamberg F, et al. Diagnostic value of time-resolved CT angiography for the lower leg. Eur Radiol. 2010;20(12):2876–81. http://www.springerlink.com/index/10.1007/s00330-010-1861-0.

    Article  Google Scholar 

  45. Jens S, Koelemay MJ, Reekers JA, Bipat S. Diagnostic performance of computed tomography angiography and contrast-enhanced magnetic resonance angiography in patients with critical limb ischaemia and intermittent claudication: systematic review and meta-analysis. Eur Radiol. 2013;23(11):3104–14. https://doi.org/10.1007/s00330-013-2933-8.

    Article  PubMed  Google Scholar 

  46. European Stroke Organisation, Tendera M, Aboyans V, et al. ESC guidelines on the diagnosis and treatment of peripheral artery diseases: document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the task force on the diagnosis and treatment of peripheral artery diseases of the european society of cardiology (ESC). Eur Heart J. 2011;32(22):2851–906. https://doi.org/10.1093/eurheartj/ehr211.

    Article  Google Scholar 

  47. Bozlar U, Ogur T, Norton PT, Khaja MS, All J, Hagspiel KD. CT angiography of the upper extremity arterial system: Part 1-anatomy, technique, and use in trauma patients. AJR Am J Roentgenol. 2013;201(4):745–52. https://doi.org/10.2214/AJR.13.11207.

    Article  PubMed  Google Scholar 

  48. Bozlar U, Ogur T, Khaja MS, All J, Norton PT, Hagspiel KD. CT angiography of the upper extremity arterial system: Part 2- clinical applications beyond trauma patients. AJR Am J Roentgenol. 2013;201(4):753–63. https://doi.org/10.2214/AJR.13.11208.

    Article  PubMed  Google Scholar 

  49. Hellinger JC, Epelman M, Rubin GD. Upper extremity computed tomographic angiography: state of the art technique and applications in 2010. Radiol Clin N Am. 2010;48(2):397–421. https://doi.org/10.1016/j.rcl.2010.02.022.

    Article  PubMed  Google Scholar 

  50. Arnett DM, Lee JC, Harms MA, et al. Caliber and fitness of the axillary artery as a conduit for large-bore cardiovascular procedures. Catheter Cardiovasc Interv. 2018;91(1):150–6. https://doi.org/10.1002/ccd.27416.

    Article  PubMed  Google Scholar 

  51. Chidambaram PK, Swaminathan RK, Ganesan P, Mayavan M. Segmental comparison of peripheral arteries by doppler ultrasound and CT angiography. J Clin Diagn Res. 2016;10(2):TC12–6. https://doi.org/10.7860/JCDR/2016/17191.7242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gillet R, Teixeira P, Meyer JB, et al. Dynamic CT angiography for the diagnosis of patients with thoracic outlet syndrome: correlation with patient symptoms. J Cardiovasc Comput Tomogr. 2018;12(2):158–65. doi: S1934-5925(17)30250-2 [pii].

    Article  Google Scholar 

  53. Cansu A, Soyturk M, Ozturk MH, Kul S, Pulathan Z, Dinc H. Diagnostic value of color doppler ultrasonography and MDCT angiography in complications of hemodialysis fistulas and grafts. Eur J Radiol. 2013;82(9):1436–43. https://doi.org/10.1016/j.ejrad.2013.03.015.

    Article  PubMed  Google Scholar 

  54. Ahmed S, Raman SP, Fishman EK. Three-dimensional MDCT angiography for the assessment of arteriovenous grafts and fistulas in hemodialysis access. Diagn Interv Imaging. 2016;97(3):297–306. https://doi.org/10.1016/j.diii.2015.12.008.

    Article  CAS  PubMed  Google Scholar 

  55. Heye S, Maleux G, Claes K, Kuypers D, Oyen R. Stenosis detection in native hemodialysis fistulas with MDCT angiography. AJR Am J Roentgenol. 2009;192(4):1079–84. https://doi.org/10.2214/AJR.08.1620.

    Article  PubMed  Google Scholar 

  56. Khandelwal N, Kalra N, Garg MK, et al. Multidetector CT angiography in takayasu arteritis. Eur J Radiol. 2011;77(2):369–74. https://doi.org/10.1016/j.ejrad.2009.08.001.

    Article  PubMed  Google Scholar 

  57. Colip CG, Gorantla V, LeBedis CA, Soto JA, Anderson SW. Extremity CTA for penetrating trauma: 10-year experience using a 64-detector row CT scanner. Emerg Radiol. 2017;24(3):223–32. https://doi.org/10.1007/s10140-016-1469-z.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus D. Hagspiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hagspiel, K.D., Norton, P.T. (2020). Computed Tomography Angiography (CTA). In: Kramer, C. (eds) Imaging in Peripheral Arterial Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-24596-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24596-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24595-5

  • Online ISBN: 978-3-030-24596-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics