Skip to main content
Log in

The biochemical composition of phytoplankton in the Laptev and East Siberian seas during the summer of 2013

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The Laptev and East Siberian seas which are generally viewed as terrestrial organic matter (TerrOM)-dominated seas, are among the least biologically understood regions in the Arctic Ocean. During the summer of 2013, however, the TerrOM signature was negligible in our samples. We investigated the biochemical composition (carbohydrates [CHO], proteins [PRT], and lipids [LIP]) of phytoplankton-dominated particulate organic matter in order to improve our understanding of the physiological status of resident phytoplankton. Our chlorophyll-a values and the presence of SCMs and resting spores were associated with a cessation of the phytoplankton bloom. Despite the low inorganic nitrogen nutrients in the water column, the cellular PRT (39%) were comparable to CHO (42%) contents and the inorganic (dissolved nitrogen:dissolved phosphate) and organic (PRT:CHO) indices did not indicate a nitrogen stress of phytoplankton metabolism. Altogether, the phytoplankton were likely in a growth transition from the exponential to the stationary phase, resulting in CHO-dominated cells with moderate PRT. By comparing our biochemical analyses with the LIP-dominated (> 50%) ones in the Chukchi Sea (the summers of 2011 and 2012), we conclude that more severe nitrogen-limited conditions occurred in the Chukchi Sea. In a quality aspect, we suggest that consumers which feed on LIP-rich phytoplankton could have an advantage to overwinter while those feeding on CHO-rich phytoplankton will gain energy efficiently in a short term. Therefore, the biochemical composition of phytoplankton could be a valid integrator of surrounding environments in which phytoplankton grow and can be a good indicator of their nutritional value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ardyna M, Babin M, Gosselin M, Devred E, Belanger S, Matsuoka A, Tremblay JE (2013) Parameterization of vertical chlorophyll a in the Arctic Ocean: impact of the subsurface chlorophyll maximum on regional, seasonal, and annual primary production estimates. Biogeosciences 10:4383–4404

    Article  CAS  Google Scholar 

  • Ben-Amotz A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–81

    Article  CAS  Google Scholar 

  • Berdalet E, Latasea M, Estrada M (1994) Effects of nitrogen and phosphorus starvation on nucleic acid and protein content of Heterocapsa sp. J Plankton Res 16:303–316

    Article  CAS  Google Scholar 

  • Biddanda B, Benner R (1997) Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol Oceanogr 42:506–518

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Carmack EC, Tamamoto-Kawai M, Haine TWM, Bacon S, Bluhm BA, Lique C, Melling H, Polyakov IV, Straneo F, Timmermans M-L, Williams WJ (2016) Freshwater and its role in the Arctic Marine System: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J Geophys Res Biogeoschi 121:675–717

    Article  CAS  Google Scholar 

  • Chu WL, Phang SM, Goh SH (1996) Environmental effects on growth and biochemical composition of Nitschia inconspicua Grunow. J Appl Phycol 8:389–396

    Article  CAS  Google Scholar 

  • Cole GA (2015) Light and the aquatic ecosystem. In: Cole GA, Weihe PE (eds) Textbook of limnology, 5th edn. Waveland Press, Louis, pp 187–204

    Google Scholar 

  • Danovaro R, Dell’Anno A, Pusceddu A, Marrale D, Croce ND, Fabiano M, Tselepides A (2000) Biochemical composition of pico-, nano- and micro-particulate organic matter and bacterioplankton biomass in the oligotrophic Cretan Sea (NE Mediterranean). Prog Oceanogr 46:279–310

    Article  Google Scholar 

  • Ding Q, Schweiger A, L’Heureux M, Battisti DS, Po-Chedley S, Johnson NC, Blanhard-Wrigglesworth E, Harnos K, Zhang Q, Eastman R, Steig EJ (2017) Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat Clim Change 7:289–295

    Article  Google Scholar 

  • Dortch Q, Whitledge TE (1992) Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Cont Shelf Res 12:1293–1309

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fabiano M, Povero P, Danovaro R (1996) Particulate organic matter composition on Terra Nova Bay (Ross Sea, Antarctica) during summer 1990. Antarct Sci 8:7–13

    Article  Google Scholar 

  • Fabregas J, Herrero C, Cabezas B, Abalde J (1985) Mass culture and biochemical variability of the marine microalga Tetraselmis suecica Kylin (Butch) with high nutrient concentration. Aquaculture 49:231–244

    Article  CAS  Google Scholar 

  • Fabregas J, Herrero C, Cabezas B, Abalde J (1986) Biomass production and biochemical composition in mass cultures of the marine microalga Isochrysis galbana Parke at varying nutrient concentrations. Aquaculture 53:1101–1113

    Google Scholar 

  • Fahl K, Nöthig EM (2007) Lithogenic and biogenic particle fluxes on the Lomonosov Ridge (central Arctic Ocean) and their relevance for sediment accumulation: vertical vs. lateral transport. Deep Sea Res Part I 54:1256–1272

    Article  Google Scholar 

  • Fernández-Méndez M, Katlein C, Rabe B, Nicolaus M, Peeken I, Bakker K, Flores H, Boetius A (2015) Photosynthetic production in the central Arctic Ocean during the record sea-ice minimum in 2012. Biogeosciences 12:3525–3549

    Article  CAS  Google Scholar 

  • Fernández-Reiriz MJ, Perez-Camacho A, Ferreiro MJ, Blanco J, Planas M, Campos MJ, Labarta U (1989) Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae. Aquaculture 83:17–37

    Article  Google Scholar 

  • Finkel ZV, Follows MJ, Liefer JD, Brown CM, Benner I, Irwin AJ (2016) Phylogenetic diversity in the macromolecular composition of microalgae. PLoS ONE 11:e0155977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogg GE, Thake B (1987) Cultures of limited volume. In: Fogg GE, Thake B (eds) Algal cultures and phytoplankton ecology. University of Wisconsin Press, Madison, pp 12–42

    Google Scholar 

  • Foy RH, Smith RV (1980) The role of carbohydrate accumulation in the growth of planktonic Oscillatoria species. Br Phycol J 15:139–150

    Article  Google Scholar 

  • Friedman O, Dubinsky Z, Arad S (1991) Effect of light intensity on growth and polysaccharide production in red and blue-green rhodophyta unicells. Biores Technol 38:105–110

    Article  CAS  Google Scholar 

  • Fry B, Sherr EB (1989) δ13C masurements as indicators of carbon flow in marine and freshwater ecosystems. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotope in ecological research. Ecological studies (analysis and synthesis), vol 68. Springer, New York, pp 196–229

    Chapter  Google Scholar 

  • Harmelin-Vivien M, Loizeau V, Mellon C, Beker B, Arlhac D, Bodiguel X, Ferraton F, Hermand R, Philippon X, Salen-Picard C (2008) Comparison of C and N stable isotope ratios between surface particulate organic matter and microphytoplankton in the Gulf of Lions (NW Mediterranean). Cont Shelf Res 28:1911–1919. https://doi.org/10.1016/j.csr.2008.03.002

    Article  Google Scholar 

  • Harrison PJ, Thompson PA, Calderwood GS (1990) Effects of nutrient and light limitation on the biochemical composition of phytoplankton. J Appl Phycol 2:45–56

    Article  Google Scholar 

  • Healey FP (1975) Physiological indicators of nutrient deficiency in algae. Can Fish Mar Serv Tech Rep 585:30

    Google Scholar 

  • Healey FP, Hendzel LL (1979) Indicators of phosphorous and nitrogen deficiency in five algae in culture. J Fish Res Board Can 36:1364–1369

    Article  CAS  Google Scholar 

  • Heiskanen AS, Keck A (1995) Distribution and sinking rates of phytoplankton, detritus, and particulate biogenic silica in the Laptev Sea and Lena River. Mar Chem 53:229–245

    Article  Google Scholar 

  • Hu Q (2004) Environmental effects on cell composition. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Oxford University Press, Oxford, pp 114–122

    Google Scholar 

  • Janout M, Hölemann J, Juhls B, Krumpen T, Rabe B, Bauch D, Wegner C, Kassens H, Timokhov L (2016) Episodic warming of near-bottom waters under the Arctic sea ice on the central Laptev Sea Shelf. Geophys Res Lett 43:264–272. https://doi.org/10.1002/2015GL066565

    Article  Google Scholar 

  • Jo N, Kang JJ, Park WG, Lee BR, Yun MS, Lee JH, Kim SM, Lee D, Joo H, Lee JH, Ahn SH, Lee SH (2016) Seasonal variation in the biochemical compositions of phytoplankton and zooplankton communities in the southwestern East/Japan Sea. Deep Sea Res Part II 143:82–90

    Article  CAS  Google Scholar 

  • Jones EP, Anderson LG, Swift JH (1998) Distribution of Atlantic and Pacific waters in the upper Arctic Ocean: implications for circulation. Geophys Res Lett 25:765–768

    Article  Google Scholar 

  • Justić D, Rabalais NN, Turner RE, Dortch Q (1995) Changes in nutrient structure of river-dominated coastal water: stoichiometric nutrient balance and its consequences. Estuarine Coast Shelf Sci 40:339–356

    Article  Google Scholar 

  • Juterzenka VK, Knickmeier K (1998) Chlorophyll a distribution in water column and sea Ice during the Laptev Sea free-up study in autumn 1995. In: Kassens H, Bauch HA, Dmitrenko IA, Eicken H, Hubberten H-W, Melles M, Thiede J, Timokhov LA (eds) Land–ocean systems in the Siberian Arctic: dynamics and history. Springer, Berlin, pp 153–160

    Google Scholar 

  • Karlsson ES, Charkin A, Dudarev O, Semiletov I, Vonk JE, Sánchez-García L, Anderson A, Gustafsson Ö (2011) Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea. Biogeosicence 8:1865–1879

    Article  CAS  Google Scholar 

  • Kim BK, Lee JH, Yun MS, Joo HT, Song HJ, Yang EJ, Chung KH, Kang SH, Lee SH (2015) High lipid composition of particulate organic matter in the northern Chukchi Sea, 2011. Deep Sea Res Part II 120:72–81

    Article  CAS  Google Scholar 

  • Kuwata A, Hama T, Takahashi M (1993) Ecophysiological characterization of two life forms, resting spores and resting cells, of a marine planktonic diatom, Chaetoceros pseudocurvisetus, formed under nutrient depletion. Mar Ecol Prog Ser 102:245–255

    Article  Google Scholar 

  • Lee SH, Kim HJ, Whitledge TE (2009) High incorporation of carbon into proteins by the phytoplankton of the Bering Strait and Chukchi Sea. Cont Shelf Res 29:1689–1696

    Article  Google Scholar 

  • Lee SH, Yun MS, Kim BK, Joo HT, Kang SH, Kang CK, Whitledge TE (2013) Contribution of small phytoplankton to total primary production in the Chukchi Sea. Cont Shelf Res 68:43–50

    Article  Google Scholar 

  • Lee SH, Kim BK, Lim YJ, Joo H, Kang JJ, Lee D, Park J, Ha SY, Lee SH (2017) Small phytoplankton contribution to the standing stocks and the total primary production in the Amundsen Sea. Biogeosciences 14:3705–3713

    Article  CAS  Google Scholar 

  • Li WKW, McLaughlin FA, Lovejoy C, Carmack EC (2009) Smallest algae thrive as the Arctic ocean freshens. Science 326:539

    Article  CAS  Google Scholar 

  • Lobbes JM, Fitznar HP, Kattner G (2000) Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochim Cosmochim 64:2973–2983

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Madariaga I, Fernández E (1990) Photosynthetic carbon metabolism of size-fractionated phytoplankton during an experimental bloom in marine microcosms. J Mar Biol Assoc U K 70:531–543

    Article  Google Scholar 

  • Marsh JB, Weinstein WJ (1966) A simple charring method for determination of lipids. J Lipid Res 7:574–576

    CAS  PubMed  Google Scholar 

  • Mayzaud P, Chanut JP, Ackman RG (1989) Seasonal changes of the biochemical composition of marine particulate matter with special reference to fatty acids and sterols. Mar Ecol Prog Ser 56:189–204

    Article  CAS  Google Scholar 

  • Moal J, Martin-Jezequel V, Harris RP, Samain JF, Poulet SA (1987) Interspecific and intraspecific variability of the chemical composition of marine phytoplankton. Oceanol Acta 10:339–346

    CAS  Google Scholar 

  • Morris I, Skea W (1978) Products of photosynthesis in natural populations of marine phytoplankton from the Gulf of Maine. Mar Biol 47:303–312

    Article  CAS  Google Scholar 

  • Morris I, Glover HE, Yentsch CS (1974) Products of photosynthesis by marine phytoplankton: the effect of environmental factors on the relative rates of protein synthesis. Mar Biol 27:1–9

    Article  CAS  Google Scholar 

  • Myklestad S, Haug A (1974) Production of carbohydrates by the marine planktonic diatoms. I. Comparison of nine different species in culture. J Exp Mar Biol Ecol 15:261–274

    Article  CAS  Google Scholar 

  • Najafi MR, Zwiers FW, Gillett NP (2015) Attribution of arctic temperature change to greenhouse-gas and aerosol influences. Nat Clim Change 5:246–249

    Article  CAS  Google Scholar 

  • Parrish CC (1987) Time series of particulate and dissolved lipid classes during spring phytoplankton blooms in Bedford Basin, a marine inlet. Mar Ecol Prog Ser 35:129–139

    Article  CAS  Google Scholar 

  • Pick FR (1987) Carbohydrate and protein content of lake seston in relation to plankton nutrient deficiency. Can J Fish Aquat Sci 44:2095–2101. https://doi.org/10.1139/f87-259

    Article  CAS  Google Scholar 

  • Rachold V, Hubberten HW (1998) Carbon isotope composition of particulate organic material in East Siberian rivers. In: Kassens H, Bauch HA, Dmitrenko IA, Eicken H, Hubberten H-W, Melles M, Thiede J, Timokhov LA (eds) Land-ocean systems in the Siberian Arctic: dynamics and history. Springer, Berlin, pp 223–238

    Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (ed) The composition of sea-water: comparative and descriptive oceanography, The sea: Ideas and observations on progress in the study of the seas. Springer, New York, pp 26–77

    Google Scholar 

  • Rintoul SR, Trull TW (2001) Seasonal evolution of the mixed layer in the Subantarctica Zone south of Australia. J Geophys Res Ocean 109:31447–31462. https://doi.org/10.1029/2000JC000329

    Article  Google Scholar 

  • Ríos AF, Fraga F, Pérez FF, Fiqueiras FG (1998) Chemical composition of phytoplankton and particulate organic matter in the Ría de Vigo (NW Spain). Sci Mar 62:257–271

    Google Scholar 

  • Rynearson TA, Richardson K, Lampitt RS, Sieracki ME, Poulton AJ, Lyngsgaard MM, Peryy MJ (2013) Major contribution of diatom resting spores to vertical flux in the sub-polar North Atlantic. Deep Sea Res Part I 82:60–71

    Article  CAS  Google Scholar 

  • Scott JM (1980) Effect of growth rate of the food alga on the growth/ingestion efficiency of a marine herbivore. J Mar Biol Assoc U K 60:681–702

    Article  CAS  Google Scholar 

  • Semiletov I, Dudarev O, Luchin V, Charkin A, Shin KH, Tanaka N (2005) The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters. Geophys Res Lett 32:L10614

    Article  CAS  Google Scholar 

  • Semiletov IP, Shakhova NE, Sergienko VI, Pipko II, Dudarev OV (2012) On carbon transport and fate in the East Siberian Arctic land–shelf–atmosphere system. Environ Res Lett 7:015201

    Article  CAS  Google Scholar 

  • Smith REH, Gosselin M, Kattner G, Legendre L, Peasant S (1997) Biosynthesis of macromolecular and lipid classes by phytoplankton in the Northeast Water Polynya. Mar Ecol Prog Ser 147:231–242

    Article  CAS  Google Scholar 

  • Søreide JE, Leu E, Berge J, Graeve M, Falk-Petersen S (2010) Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob Change Biol 16:3154–3163

    Google Scholar 

  • Spielhagen RF, Werner K, Sørensen SA, Zamelczyk K, Kandiano E, Budeus G, Husum K, Marchitto TM, Hald M (2011) Enhanced modern hear transfer to the Arctic by warm Atlantic water. Science 331:450–453

    Article  CAS  PubMed  Google Scholar 

  • Suárez I, Marañón E (2003) Photosynthate allocation in a temperature sea over an annual cycle: the relationship between protein synthesis and phytoplankton physiological state. J Sea Res 50:285–299

    Article  CAS  Google Scholar 

  • Sukhanova IN, Flint MV, Georgieva EJ, Lange EK, Kravchishina MD, Demidov AB, Nedospasov AA, Polukhin AA (2017) The structure of phytoplankton communities in the eastern part of the Laptev sea. Ocenology 57:75–90

    Article  Google Scholar 

  • Taipale SJ, Galloway AWE, Aalto SL, Kahilainen KK, Strandberg U, Kankaala P (2016) Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency. Sci Rep 6:30897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tesi T, Geibel MC, Pearce C, Panova E, Vonk HE, Karlsson E, Salvado JA, Kruså M, Bröder Humborg C, Semiletov I, Gustafsson Ö (2017) Carbon geochemistry of plankton-dominated samples in the Laptev and East Siberian shelves: contrasts in suspended particle composition. Ocean Sci 13:735–748

    Article  CAS  Google Scholar 

  • Thomas DN, Gleitz M (1993) Allocation of photoassimilated carbon into major algal metabolite fractions: variation between two diatom species isolated from the Weddell Sea (Antarctica). Polar Biol 13:281–286

    Article  Google Scholar 

  • Thornton SF, McManus J (1994) Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuarine Coast Shelf Sci 38:219–233

    Article  CAS  Google Scholar 

  • Tokinaga H, Wie SP, Mukougawa H (2017) Early 20th-century Arctic warming intensifies by Pacific and Atlantic multidecadal variability. PNAS 114:6227–6232

    Article  CAS  PubMed  Google Scholar 

  • Tremblay JÉ, Gagnon J (2009) The effects of irradiance and nutrient supply on the productivity of Arctic waters: a perspective on climate change. In: Nihoul JC, Kostianoy AG (eds) Influence of climate change on the changing Arctic and Sub-Arctic conditions. Springer, Dordrecht, pp 73–93

    Chapter  Google Scholar 

  • Tuschling K (2000) Phytoplankton ecology in the arctic Laptev Sea—a comparison of three seasons. Ber Polarforsch 347:1–144 (in German)

    Google Scholar 

  • Tuschling K, Juterzenka KV, Okolodkov YB, Anoshkin A (2000) Compositions and distribution and sympagic algal assemblages in the Laptev Sea during autumnal freeze-up. J Plankton Res 22:843–864

    Article  Google Scholar 

  • Vetrov AA, Romankevich EA, Belyaev NA (2008) Chlorophyll, primary production, fluxes, and balance of organic carbon in the Laptev Sea. Geochem Int 46:1055–1063

    Article  Google Scholar 

  • Wainman BC, Lean DRS (1992) Carbon fixation into lipid in small freshwater lakes. Limnol Oceanogr 37:956–965

    Article  CAS  Google Scholar 

  • Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnol Oceanogr 39:1985–1992

    Article  CAS  Google Scholar 

  • Whitledge TE, Malloy SC, Patton CJ, Wirick CD (1981) Automated nutrient analyses in seawater. (No. 51398). Brookhaven National Lab, Upton

    Book  Google Scholar 

  • Winberg GG (1971) Symbols, units and conversion factors in studies of fresh water productivity. Int Biol Progr, London, p 23

    Google Scholar 

  • Winterfeld M, Laepple T, Mollenhauer G (2015) Characterization of particulate organic matter in the Lena River delta and adjacent nearshore zone, NE Siberia—Part I: radiocarbon inventories. Biogeosciences 12:3769–3788

    Article  CAS  Google Scholar 

  • Yun MS, Chung KH, Zimmermann S, Zhao J, Joo HM, Lee SH (2012) Phytoplankton productivity and its response to higher light levels in the Canada Basin. Polar Biol 35:257–268

    Article  Google Scholar 

  • Yun MS, Lee DB, Kim BK, Kang JJ, Lee JH, Yang EJ, Park WG, Chung KH, Lee SH (2015) Comparison of phytoplankton macromolecular compositions and zooplankton proximate compositions in the northern Chukchi Sea. Deep Sea Res Part II 120:82–90

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was a part of the Nansen and Amundsen Basins Observational System (NABOS), and we thank all members of the NABOS in 2013.

Funding

This work was supported by the Korea Research Foundation (KRF) grant funded by the Korean government (MEST; No.2016015679).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Heon Lee.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Ethical approval

The article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, S.H., Whitledge, T.E., Stockwell, D.A. et al. The biochemical composition of phytoplankton in the Laptev and East Siberian seas during the summer of 2013. Polar Biol 42, 133–148 (2019). https://doi.org/10.1007/s00300-018-2408-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-018-2408-0

Keywords

Navigation