Skip to main content
Log in

The effects of growth regulators and a scanning electron microscope study of somatic embryogenesis in Antartic hair grass (Deschampsia antarctica Desv.)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Deschampsia antartctica Desv. is a type of grass that is physiologically and biochemically adapted to the extreme environmental conditions of the Antarctic continent, which is of interest to many investigators. To explore the potential use of somatic embryogenesis as a biotechnological tool for the mass micropropagation of this grass, the effects of three dosages of 2,4-dichlorophenoxyacetic acid, dicamba, and picloram were evaluated. The developmental and morphological stages of somatic embryo formation were evaluated using scanning electron microscopy (SEM). Plant regeneration was evaluated under the effects of different dosages of 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA), alone and combined. The results indicated that a Murashige and Skoog basal medium supplemented with 3 mg/l of dicamba was the best for inducing somatic embryogenesis, while the combination of 1 mg/l BAP and 0.1 mg/l of NAA was the most efficient for the regeneration and development of the plants. This work demonstrates, for the first time with the use of SEM, that it is possible to apply somatic embryogenesis for the regeneration of superficial and morphological structures of somatic embryos in the species D. antarctica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe T, Futsuhara Y (1986) Genotypic variability for callus formation and plant regeneration in rice (Oryza sativa L.). Theor Appl Genet 72(1):3–10. doi:10.1007/bf00261446

    Article  CAS  PubMed  Google Scholar 

  • Alberdi M, Bravo L, Gutierrez A, Gidekel M, Corcuera L (2002) Ecophysiology of Antarctic vascular plants. Physiol Plant 115(4):479–486. doi:10.1034/j.1399-3054.2002.1150401.x

    Article  CAS  PubMed  Google Scholar 

  • Barampuram S, Chung B, Lee S, An B, Lee E, Cho J-Y (2009) Development of an embryogenic callus induction method for centipede grass (Eremochloa ophiuroides Munro) and subsequent plant regeneration. In Vitro Cell Dev Plant 45(2):155–161. doi:10.1007/s11627-009-9199-5

    Article  Google Scholar 

  • Basnayake S, Moyle R, Birch R (2011) Embryogenic callus proliferation and regeneration conditions for genetic transformation of diverse sugarcane cultivars. Plant Cell Rep 30(3):439–448. doi:10.1007/s00299-010-0927-4

    Article  CAS  PubMed  Google Scholar 

  • Bravo L, Griffith M (2005) Characterization of antifreeze activity in Antarctic plants. J Exp Bot 56(414):1189–1196. doi:10.1093/jxb/eri112

    Article  CAS  PubMed  Google Scholar 

  • Bravo LA, Ulloa N, Zuñiga GE, Casanova A, Corcuera LJ, Alberdi M (2001) Cold resistance in Antarctic angiosperms. Physiol Plant 111(1):55–65. doi:10.1034/j.1399-3054.2001.1110108.x

    Article  CAS  Google Scholar 

  • Brisibe EA, Miyake H, Taniguchi T, Maeda E (1994) Regulation of somatic embryogenesis in long-term callus cultures of sugarcane (Saccharum officinarum L.). New Phytol 126(2):301–307. doi:10.1111/j.1469-8137.1994.tb03949.x

    Article  CAS  Google Scholar 

  • Chang Y, von Zitzewitz J, Hayes PM, Chen TH (2003) High frequency plant regeneration from immature embryos of an elite barley cultivar (Hordeum vulgare L. cv. Morex). Plant Cell Rep 21(8):733–738. doi:10.1007/s00299-003-0607-8

    CAS  PubMed  Google Scholar 

  • Choi YE, Yang DC, Park JC, Soh WY, Choi KT (1998) Regenerative ability of somatic single and multiple embryos from cotyledons of Korean ginseng on hormone-free medium. Plant Cell Rep 17(6):544–551. doi:10.1007/s002990050439

    Article  CAS  Google Scholar 

  • Corredoira E, Ballester A, Vieitez AM (2003) Proliferation, maturation and germination of Castanea sativa Mill. Somatic embryos originated from leaf explants. Ann Bot 92(1):129–136. doi:10.1093/aob/mcg107

    Article  CAS  PubMed  Google Scholar 

  • Creemers-Molenaar J, Loeffen JPM, Van der Valk P (1988) The effect of 2,4-dichlorophenoxyacetic acid and donor plant environment on plant regeneration from immature inflorescence-derived callus of Lolium perenne L. and Lolium multiflorum L. Plant Sci 57(2):165–172. doi:10.1016/0168-9452(88)90083-0

    Article  CAS  Google Scholar 

  • Day TA, Ruhland CT, Xiong FS (2001) Influence of solar ultraviolet-B radiation on Antarctic terrestrial plants: results from a 4-year field study. J Photochem Photobiol, B 62(1–2):78–87

    Article  CAS  Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ 74(3):201–228. doi:10.1023/a:1024033216561

    Article  Google Scholar 

  • Filippov M, Miroshnichenko D, Vernikovskaya D, Dolgov S (2006) The effect of auxins, time exposure to auxin and genotypes on somatic embryogenesis from mature embryos of wheat. Plant Cell Tissue Organ 84(2):100192–100201. doi:10.1007/s11240-005-9026-6

    Article  Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43(1):27–47. doi:10.1023/B:GROW.0000038275.29262.fb

    Article  CAS  Google Scholar 

  • He Y, Jones HD, Chen S, Chen XM, Wang DW, Li KX, Wang DS, Xia LQ (2010) Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J Exp Bot 61(6):1567–1581. doi:10.1093/jxb/erq035

    Article  CAS  PubMed  Google Scholar 

  • Holderegger R, Stehlik I, Lewis Smith RI, Abbott RJ (2003) Populations of Antarctic hairgrass (Deschampsia antarctica) show low genetic diversity. Arct Antarct Alp Res 35(2):214–217. doi:10.1657/1523-0430(2003)035[0214:POAHDA]2.0.CO;2

    Google Scholar 

  • Hu XR, Yang AF, Zhang KW, Wang J, Zhang JR (2006) Optimization of in vitro; multiple shoot clump induction and plantlet regeneration of Kentucky bluegrass (Poa pratensis). Plant Cell Tissue Organ 84(1):90–99. doi:10.1007/s11240-005-9009-7

    Article  Google Scholar 

  • Huang XQ, Wei ZM (2004) High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea Mays L.). Plant Cell Rep 22(11):793–800. doi:10.1007/s00299-003-0748-9

    Article  CAS  PubMed  Google Scholar 

  • Kaparakis G, Alderson P (2008) Role for cytokinins in somatic embryogenesis of pepper (Capsicum annuum L.)? Plant Growth Regul 27(2):110–114. doi:10.1007/s00344-007-9037-0

    CAS  Google Scholar 

  • Li L, Qu R (2002) In vitro somatic embryogenesis in turf-type bermudagrass: roles of abscisic acid and gibberellic acid, and occurrence of secondary somatic embryogenesis. Plant Breeding 121(2):155–158. doi:10.1046/j.1439-0523.2002.00684.x

    Article  CAS  Google Scholar 

  • Liu M, Yang J, Lu S, Guo Z, Lin X, Wu H (2008) Somatic embryogenesis and plant regeneration in centipedegrass (Eremochloa ophiuroides [Munro] Hack.). In Vitro Cell Dev Plant 44(2):100–104. doi:10.1007/s11627-008-9115-4

    Article  Google Scholar 

  • Muller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453(7198):1094–1097. doi:10.1038/nature06943

    Article  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Feher A (2002) The Role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129(4):1807–1819. doi:10.1104/pp.000810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira BK, Rosa RM, da Silva J, Guecheva TN, Oliveira IM, Ianistcki M, Benvegnu VC, Furtado GV, Ferraz A, Richter MF, Schroder N, Pereira AB, Henriques JA (2009) Protective effects of three extracts from Antarctic plants against ultraviolet radiation in several biological models. J Photochem Photobiol, B 96(2):117–129. doi:10.1016/j.jphotobiol.2009.04.011

    Article  CAS  Google Scholar 

  • Perilli S, Moubayidin L, Sabatini S (2010) The molecular basis of cytokinin function. Curr Opin Plant Biol 13(1):21–26. doi:10.1016/j.pbi.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  • Przetakiewicz A, Orczyk W, Nadolska-Orczyk A (2003) The effect of auxin on plant regeneration of wheat, barley and triticale. Plant Cell Tissue Organ 73(3):245–256. doi:10.1023/a:1023030511800

    Article  CAS  Google Scholar 

  • Quiroz-Figueroa F, Rojas-Herrera R, Galaz-Avalos R, Loyola-Vargas V (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Organ 86(3):285–301. doi:10.1007/s11240-006-9139-6

    Article  Google Scholar 

  • Raemakers CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81(1):93–107. doi:10.1007/bf00022463

    Article  Google Scholar 

  • Rodriguez S, Mondejar C, Ramos ME, Diaz E, Maribona R, Ancheta O (1996) Sugarcane somatic embryogenesis: a scanning electron microscopy study. Tissue Cell 28(2):149–154. doi:10.1016/S0040-8166(96)80003-6

    Article  CAS  PubMed  Google Scholar 

  • Ruhland CT, Day TA (2001) Size and longevity of seed banks in Antarctica and the influence of ultraviolet-B radiation on survivorship, growth and pigment concentrations of Colobanthus quitensis seedlings. Environ Exp Bot 45(2):143–154. doi:10.1016/S0098-8472(00)00089-7

    Article  CAS  PubMed  Google Scholar 

  • Sahrawat AK, Chand S (2004) High frequency plant regeneration from coleoptile tissue of barley (Hordeum vulgare L.). Plant Sci 167(1):27–34. doi:10.1016/j.plantsci.2004.02.019

    Article  CAS  Google Scholar 

  • Sharma V, Hänsch R, Mendel R, Schulze J (2007) Node-derived cultures with high-morphogenic competence in barley and wheat. Plant Cell Tissue Organ 88(1):21–33. doi:10.1007/s11240-006-9172-5

    Article  Google Scholar 

  • Steinmacher DA, Guerra MP, Saare-Surminski K, Lieberei R (2011) A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis. Ann Bot 108(8):1463–1475. doi:10.1093/aob/mcr033

    Article  CAS  PubMed  Google Scholar 

  • Totik SM, Miyake H, Takeoka Y (1998) Changes in surface structure during direct somatic embryogenesis in rice scutellum observed by scanning electron microscopy. Plant Prod Sci 1(3):223–231

    Article  Google Scholar 

  • Trifonova A, Madsen S, Olesen A (2001) Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci 161(5):871–880. doi:10.1016/s0168-9452(01)00479-4

    Article  CAS  Google Scholar 

  • Visarada KBRS, Sailaja M, Sarma NP (2002) Effect of callus induction media on morphology of embryogenic calli in rice genotypes. Biol Plant 45(4):495–502. doi:10.1023/a:1022323221513

    Article  CAS  Google Scholar 

  • Zuñiga GE, Alberdi M, Corcuera LJ (1996) Non-structural carbohydrates in Deschampsia Antarctica desv. from South Shetland Islands, maritime antarctic. Environ Exp Bot 36(4):393–399. doi:10.1016/s0098-8472(96)01026-x

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Nicolas Nazal from Gene X-Press Chile for his help in revising this manuscript and to the Instituto Antartico Chileno (INACH) for allowing us to participate in the Expedición Científica Antártica (ECA-47) during January 2010. This work was funded by Uxmal S.A. and the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) Doctorate Fellowship No. 24091116 awarded to Jennifer Osorio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Gidekel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osorio, J., Calderón, C., Gutiérrez-Moraga, A. et al. The effects of growth regulators and a scanning electron microscope study of somatic embryogenesis in Antartic hair grass (Deschampsia antarctica Desv.). Polar Biol 37, 217–225 (2014). https://doi.org/10.1007/s00300-013-1425-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-013-1425-2

Keywords

Navigation