Skip to main content
Log in

Hydrogen sulfide (H2S) and potassium (K+) synergistically induce drought stress tolerance through regulation of H+-ATPase activity, sugar metabolism, and antioxidative defense in tomato seedlings

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Exogenous potassium (K + ) and endogenous hydrogen sulfide (H 2 S) synergistically alleviate drought stress through regulating H + -ATPase activity, sugar metabolism and redox homoeostasis in tomato seedlings .

Abstract

Present work evaluates the role of K+ in the regulation of endogenous H2S signaling in modulating the tolerance of tomato (Solanum lycopersicum L. Mill.) seedlings to drought stress. The findings reveal that exposure of seedlings to 15% (w/v) polyethylene glycol 8000 (PEG) led to a substantial decrease in leaf K+ content which was associated with reduced H+-ATPase activity. Treatment with sodium orthovanadate (SOV, PM H+-ATPase inhibitor) and tetraethylammonium chloride (TEA, K+ channel blocker) suggests that exogenous K+ stimulated H+-ATPase activity that further regulated endogenous K+ content in tomato seedlings subjected to drought stress. Moreover, reduction in H+-ATPase activity by hypotaurine (HT; H2S scavenger) substantiates the role of endogenous H2S in the regulation of H+-ATPase activity. Elevation in endogenous K+ content enhanced the biosynthesis of H2S through enhancing the synthesis of cysteine, the H2S precursor. Synergistic action of H2S and K+ effectively neutralized drought stress by regulating sugar metabolism and redox homoeostasis that resulted in osmotic adjustment, as witnessed by reduced water loss, and improved hydration level of the stressed seedlings. The integrative role of endogenous H2S in K+ homeostasis was validated using HT and TEA which weakened the protection against drought stress induced impairments. In conclusion, exogenous K+ and endogenous H2S regulate H+-ATPase activity which plays a decisive role in the maintenance of endogenous K+ homeostasis. Thus, present work reveals that K+ and H2S crosstalk is essential for modulation of drought stress tolerance in tomato seedlings.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through Research Group No. RG-1441-438.

Author information

Authors and Affiliations

Authors

Contributions

MHS, MNK: Conceptualization, Methodology, Data curation, Formal analysis, Investigation, SM: Data interpretation, SA, RAB, AAA, and QDA: Review & Editing, BMAA, HMA, and IAAA: Data Curation Software, Formal analysis, MHS: Funding acquisition.

Corresponding author

Correspondence to Manzer H. Siddiqui.

Additional information

Communicated by Aryadeep Roychoudhury.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, M.H., Khan, M.N., Mukherjee, S. et al. Hydrogen sulfide (H2S) and potassium (K+) synergistically induce drought stress tolerance through regulation of H+-ATPase activity, sugar metabolism, and antioxidative defense in tomato seedlings. Plant Cell Rep 40, 1543–1564 (2021). https://doi.org/10.1007/s00299-021-02731-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02731-3

Keywords

Navigation