Skip to main content
Log in

Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ content

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Hydrogen sulfide (H2S) is an important gaseous molecule in a number of plant developmental processes and stress responses. Triticum aestivum L. (LM 15) is a salt-sensitive wheat cultivar that was used here to examine the effect of exogenous H2S on seedling growth, Na+ and K+ concentration, and Na+ transportation under NaCl stress. The results showed that pretreatment with 0.05 mM sodium hydrosulfide (NaHS), a H2S donor, for 12 h significantly alleviated the growth inhibition of wheat seedlings under 100 mM NaCl. In addition, pretreatment with NaHS decreased the Na+ concentration, Na+/K+ ratio, the selective absorption capacity for K+ over Na+ and Na+ efflux ratio, and increased the selective transport capacity for K+ over Na+ under salt stress. Additional experiments with CaCl2 (an inhibitor of nonselective cation channels—NSCCs), TEA+ (an inhibitor of low affinity K+ transporter) or amiloride (an inhibitor of salt overly sensitive 1—SOS1) showed that NSCCs and SOS1 were the major pathways by which H2S reduced Na+ concentration in wheat seedlings. These results showed that exogenous H2S alleviated growth inhibition by maintaining a lower Na+ concentration in wheat seedlings under NaCl stress via the regulation of NSCCs and SOS1 pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CBS:

Cystathionine β-synthetase

CO:

Carbonic oxide

CSE:

Cystathionine γ-lyase

HKT:

High-affinity K+ transporter

NaHS:

Sodium hydrosulfide

NO:

Nitric oxide

NSCCs:

Nonselective cation channels

SA:

Selective absorption capacity

SOS1:

Salt overly sensitive 1

ST:

Selective transport capacity

References

  • Amtmann A, Sanders D (1998) Mechanisms of Na+ uptake by plant cells. Adv Bot Res 29:75–112

    Article  Google Scholar 

  • Amtmann A, Fischer M, Marsh EL, Stefanovic A, Sanders D, Schachtman DP (2001) The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt-sensitive yeast strain. Plant Physiol 126:1061–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng NH, Pittman JK, Zhu JK, Hirschi KD (2004) The protein kinase SOS2 activates the arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. J Biol Chem 279:2922–2926

    Article  CAS  PubMed  Google Scholar 

  • Davenport RJ, Tester M (2000) A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol 122:823–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from arabidopsis roots. Plant Physiol 128:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan B, Ma Y, Jiang M, Yang F, Ni L, Lu W (2015) Improvement of photosynthesis in rice (Oryza sativa L.) as a result of an increase in stomatal aperture and density by exogenous hydrogen sulfide treatment. Plant Growth Regul 75:33–44

    Article  CAS  Google Scholar 

  • Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in arabidopsis. Plant Physiol 133:307–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang T, Cao Z, Li J, Shen W, Huang L (2014) Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato. Plant Physiol Biochem 76:44–51

    Article  CAS  PubMed  Google Scholar 

  • Feki K, Quintero FJ, Khoudi H, Leidi EO, Masmoudi K, Pardo JM, Brini F (2014) A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic arabidopsis. Plant Cell Rep 33:277–288

    Article  CAS  PubMed  Google Scholar 

  • Fricke W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J Exp Bot 55:1115–1123

    Article  CAS  PubMed  Google Scholar 

  • García-Bereguiaín MA, Samhan-Arias AK, Martín-Romero FJ, Gutierrez-Merino C (2008) Hydrogen sulfide raises cytosolic calcium in neurons through activation of L-type Ca2+ channels. Antioxid Redox Signal 10:31–42

    Article  PubMed  Google Scholar 

  • García-Mata C, Lamattina L (2010) Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol 188:977–984

    Article  PubMed  Google Scholar 

  • Guo KM, Babourina O, Christopher DA, Borsics T, Rengel Z (2008) The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in arabidopsis. Physiol Plant 134:499–507

    Article  CAS  PubMed  Google Scholar 

  • Guo KM, Babourina O, Rengel Z (2009) Na+/H+ antiporter activity of the SOS1 gene: lifetime imaging analysis and electrophysiological studies on arabidopsis seedlings. Physiol Plant 137:155–165

    Article  CAS  PubMed  Google Scholar 

  • Guo Q, Meng L, Mao PC, Tian XX (2015) Salt tolerance in two tall wheatgrass species is associated with selective capacity for K+ over Na+. Acta Physiol Plant 37:1–9

    Article  Google Scholar 

  • Halfter U, Ishitani M, Zhu JK (2000) The arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci 97:3735–3740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu KD, Bai GS, Li WJ, Yan H, Hu LY, Li YH, Zhang H (2015) Sulfur dioxide promotes germination and plays an antioxidant role in cadmium-stressed wheat seeds. Plant Growth Regul 75:271–280

    Article  CAS  Google Scholar 

  • Jin Z, Xue S, Luo Y, Tian B, Fang H, Li H, Pei Y (2013) Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in arabidopsis. Plant Physiol Biochem 62:41–46

    Article  CAS  PubMed  Google Scholar 

  • Kronzucker HJ, Szczerba MW, Moazami-Goudarzi M, Britto DT (2006) The cytosolic Na+: K+ ratio does not explain salinity-induced growth impairment in barley: a dual-tracer study using 42K+ and 24Na+. Plant Cell Environ 29:2228–2237

    Article  CAS  PubMed  Google Scholar 

  • Lai D, Mao Y, Zhou H, Li F, Wu M, Zhang J, He Z, Cui W, Xie Y (2014) Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Sci 225:117–129

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Ding XJ, Du PF (2013) Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline. J Plant Physiol 170:741–747

    Article  CAS  PubMed  Google Scholar 

  • Li J, Jia H, Wang J, Cao Q, Wen Z (2014) Hydrogen sulfide is involved in maintaining ion homeostasis via regulating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root. Protoplasma 251:899–912

    Article  CAS  PubMed  Google Scholar 

  • Lin YT, Li MY, Cui WT, Lu W, Shen WB (2012) Haem oxygenase-1 is involved in hydrogen sulfide-induced cucumber adventitious root formation. J Plant Growth Regul 31:519–528

    Article  CAS  Google Scholar 

  • Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:1943–1945

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nagpure B, Bian JS (2013) OP07 Neuroprotective effect of hydrogen sulfide: regulation of amyloidosis and inflammation in SH-SY5Y neuroblastoma and BV-2 microglia cells. Nitric Oxide 31:S22

    Article  Google Scholar 

  • Nakamura M, Kuramata M, Kasugai I, Abe M, Youssefian S (2009) Increased thiol biosynthesis of transgenic poplar expressing a wheat O-acetylserine (thiol) lyase enhances resistance to hydrogen sulfide and sulfur dioxide toxicity. Plant Cell Rep 28:313–323

    Article  CAS  PubMed  Google Scholar 

  • Ortega JA, Ortega JM, Julian D (2008) Hypotaurine and sulfhydrylcontaining antioxidants reduce H2S toxicity in erythrocytes from a marine invertebrate. J Exp Bot 211:3816–3825

    Article  CAS  Google Scholar 

  • Papanatsiou M, Scuffi D, Blatt MR, Garia-Mata C (2015) Hydrogen sulphide regulates inward-rectifying K+ channels in conjunction with stomatal closure. Plant Physiol. doi:10.1104/pp.114.256057

    PubMed  PubMed Central  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161

    Article  CAS  PubMed  Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci 99:8436–8441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663

    Article  CAS  PubMed  Google Scholar 

  • Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370:655–658

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Ye T, Han N, Bian H, Liu X, Chan Z (2015) Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in arabidopsis. J Integr Plant Biol. doi:10.1111/jipb.12302

    Google Scholar 

  • Sun J, Wang MJ, Ding MQ et al (2010) H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant, Cell Environ 33:943–958

    Article  CAS  Google Scholar 

  • Tapken D, Hollmann M (2008) Arabidopsis thaliana glutamate receptor ion channel function demonstrated by ion pore transplantation. J Mol Biol 383:36–48

    Article  CAS  PubMed  Google Scholar 

  • Telezhkin V, Brazier SP, Cayzac SH, Wilkinson WJ, Riccardi D, Kemp PJ (2010) Mechanism of inhibition by hydrogen sulfide of native and recombinant BK Ca channels. Respir Physiol Neurobiol 172:169–178

    Article  CAS  PubMed  Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  Google Scholar 

  • Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R (2009) Is H2S a stinky remedy for atherosclerosis? Arterioscler Thromb Vasc Biol 29:156–157

    Article  PubMed  Google Scholar 

  • Wang S, Zheng W, Ren J, Zhang C (2002) Selectivity of various types of salt-resistant plants for K+ over Na+. J Arid Environ 52:457–472

    Article  Google Scholar 

  • Wang S, Wan C, Wang Y, Chen H, Zhou Z, Fu H, Sosebee RE (2004) The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alxa Desert, China. J Arid Environ 56:525–539

    Article  Google Scholar 

  • Wang SM, Zhang JL, Flowers TJ (2007) Low-affinity Na+ uptake in the halophyte Suaeda maritima. Plant Physiol 145(2):559–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CM, Zhang JL, Liu XS, Li Z, Wu GQ, Cai JY, Flowers TJ, Wang SM (2009) Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+. Plant, Cell Environ 32:486–496

    Article  CAS  Google Scholar 

  • Wang Y, Li L, Cui W, Xu S, Shen W, Wang R (2012) Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil 351:107–119

    Article  CAS  Google Scholar 

  • Williams E, Pead S, Whiteman M, Wood M, Wilson I, Ladomery M, Teklic T, Lisjak M, Hancock J (2015) Detection of thiol modifications by hydrogen sulfide. Methods Enzymol 555:233–251

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322:587–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Tang J, Liu XP, Wang Y, Yu W, Peng WY, Fang F, Ma DF, Wei ZJ, Hu LY (2009a) Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. J Integr Plant Biol 51:1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Ye YK, Wang SH, Luo JP, Tang J, Ma DF (2009b) Hydrogen sulfide counteracts chlorophyll loss in sweetpotato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regul 58:243–250

    Article  CAS  Google Scholar 

  • Zhang H, Hu LY, Li P, Hu KD, Jiang CX, Luo JP (2010a) Hydrogen sulfide alleviated chromium toxicity in wheat. Biol Plant 54:743–747

    Article  CAS  Google Scholar 

  • Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL (2010b) Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol 52:556–567

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported through grants from the NSFC (National Natural Science Research Foundation of China, Project No. 30870158, 31570251), Programs Foundation of the Ministry of Education of China (20123704130001) and Natural Science Research Foundation of Shandong Province (ZR2014CZ002). We thank Prof. Qingrong Gao from Shandong Agricultural University for kindly providing wheat seeds.

Author contributions

Bao-Shan Wang designed the experiments and revised the paper. Yun-Quan Deng, Jing Bao, Fang Yuan, Xue Liang and Zhong-Tao Feng performed the experiments. Yun-Quan Deng and Jing Bao drafted the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Shan Wang.

Additional information

Yun-Quan Deng and Jing Bao are equally contributed to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 9676 kb)

Supplementary material 2 (PDF 779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, YQ., Bao, J., Yuan, F. et al. Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ content. Plant Growth Regul 79, 391–399 (2016). https://doi.org/10.1007/s10725-015-0143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0143-x

Keywords

Navigation