Skip to main content
Log in

Cold-inducible MaC2H2s are associated with cold stress response of banana fruit via regulating MaICE1

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

MaC2H2s are involved in cold stress response of banana fruit via repressing the transcription of MaICE1.

Abstract

Although C2H2 zinc finger proteins have been found to be involved in banana fruit ripening through transcriptional controlling of ethylene biosynthetic genes, their involvement in cold stress of banana remains elusive. In this study, another C2H2-ZFP gene from banana fruit was identified, which was named as MaC2H2-3. Gene expression analysis revealed that MaC2H2-1, MaC2H2-2 and MaC2H2-3 were cold inducible in the peel of banana during low temperature storage. MaC2H2-3 functions as a transcriptional repressor and localizes predominantly in nucleus. Particularly, promoters of MaC2H2-2 and MaC2H2-3 were noticeably activated by cold as well, further indicating the potential roles of C2H2 in cold stress of banana. Moreover, MaC2H2-2 and MaC2H2-3 significantly repressed the transcription of MaICE1, a key component in cold signaling pathway. Overall, these findings suggest that MaC2H2s may take part in controlling cold stress of banana through suppressing the transcription of MaICE1, providing new insight of the regulatory basis of C2H2 in cold stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CBF:

C-repeat binding factor

COR:

Cold-regulated

DLR:

Dual-luciferase reporter

GFP:

Green fluorescence protein

ICE:

Inducer of CBF expression

ORF:

Open reading frame

RH:

Relative humidity

RT-qPCR:

Quantitative real-time PCR

TF:

Transcription factor

ZFP:

Zinc finger protein

References

  • Chen L, Zhong HY, Kuang JF et al (2011) Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 234:377–390

    Article  CAS  PubMed  Google Scholar 

  • Cheng MN, Huang ZJ, Hua QZ et al (2017) The WRKY transcription factor HpWRKY44 regulates CytP450-like1 expression in red pitaya fruit (Hylocereus polyrhizus). Hortic Res 4:17039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH et al (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu JK, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Li H, Zhang X et al (2015) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32:278–289

    Article  CAS  PubMed  Google Scholar 

  • Dong CH, Agarwal M, Zhang Y et al (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan ZQ, Chen JY, Kuang JF et al (2017) The banana fruit SINA Ubiquitin ligase MaSINA1 regulates the stability of MaICE1 to be negatively involved in cold stress response. Front Plant Sci 8:995

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan ZQ, Ba LJ, Shan W et al (2018a) A banana R2R3-MYB transcription factor MaMYB3 is involved in fruit ripening through modulation of starch degradation by repressing starch degradation-related genes and MabHLH6. Plant J. https://doi.org/10.1111/tpj.14099

    Article  PubMed  Google Scholar 

  • Fan ZQ, Tan XL, Shan W, K et al (2018b) Characterization of a transcriptional regulator BrWRKY6 that associates with gibberellin-suppressed leaf senescence of Chinese flowering cabbage. J Agric Food Chem 66:1791–1799

    Article  CAS  PubMed  Google Scholar 

  • Fu CC, Han YC, Guo YF et al (2018) Differential expression of histone deacetylases during banana ripening and identification of MaHDA6 in regulating ripening-associated genes. Postharvest Biol Technol 141:24–32

    Article  CAS  Google Scholar 

  • Han YC, Fu CC, Kuang JF et al (2016) Two banana fruit ripening-related C2H2 zinc finger proteins are transcriptional repressors of ethylene biosynthetic genes. Postharvest Biol Technol 116:8–15

    Article  CAS  Google Scholar 

  • Hellens RP, Allan AC, Friel EN et al (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hichri I, Muhovski Y, Žižkova E et al (2014) The Solanum lycopersicum Zinc Finger2 cysteine-2/histidine-2 repressor-like transcription factor regulates development and tolerance to salinity in tomato and Arabidopsis. Plant Physiol 164:1967–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha UC, Bohra A, Jha R (2017) Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. Plant Cell Rep 36:1–35

    Article  CAS  PubMed  Google Scholar 

  • Jin YM, Piao R, Yan YF et al (2018) Overexpression of a new zinc finger protein transcription factor OsCTZFP8 improves cold tolerance in rice. Int J Genom 2018:5480617

    Google Scholar 

  • Kazemi-Shahandashti SS, Maali-Amiri R (2018) Global insights of protein responses to cold stress in plants: signaling, defence, and degradation. J Plant Physiol 226:123–135

    Article  CAS  PubMed  Google Scholar 

  • Kim JC, Lee SH, Cheong YH et al (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25:247–259

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Duan L, Zhang J et al (2010) Cucumber (Cucumis sativus L.) over-expressing cold-induced transcriptome regulator ICE1 exhibits changed morphological characters and enhances chilling tolerance. Sci Hortic 124:29–33

    Article  CAS  Google Scholar 

  • Liu XM, An J, Han HJ et al (2014) ZAT11, a zinc finger transcription factor, is a negative regulator of nickel ion tolerance in Arabidopsis. Plant Cell Rep 33:2015–2021

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Yang L, Yu M et al (2017) A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana. Plant Physiol Biochem 113:78–88

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Bai X, Zhu D et al (2012) GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress. Planta 235:1141–1155

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14:5312–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Jin JB, Lee J et al (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Shiba H, Ohta M et al (2012) SlICE1 encoding a MYC-type transcription factor controls cold tolerance in tomato, Solanum lycopersicum. Plant Biotechnol 29:253–260

    Article  CAS  Google Scholar 

  • Ohta M, Sato A, Na R (2018) MYC-type transcription factors, MYC67 and MYC70, interact with ICE1 and negatively regulate cold tolerance in Arabidopsis. Sci Rep 8:11622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi XN, Xiao YY, Fan ZQ et al (2016) A banana fruit transcriptional repressor MaERF10 interacts with MaJAZ3 to strengthen the repression of JA biosynthetic genes involved in MeJA-mediated cold tolerance. Postharvest Biol Technol 120:222–231

    Article  CAS  Google Scholar 

  • Sainsbury F, Thuenemann EC, Lomonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7:682–693

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y et al (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136:2734–2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan W, Kuang JF, Chen L et al (2012) Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening. J Exp Bot 63:5171–5187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan XL, Fan ZQ, Shan W et al (2018) Association of BrERF72 with methyl jasmonate-induced leaf senescence of Chinese flowering cabbage through activating JA biosynthesis-related genes. Hortic Res 5:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian ZD, Zhang Y, Liu J et al (2010) Novel potato C2H2-type zinc finger protein gene, StZFP1, which responds to biotic and abiotic stress, plays a role in salt tolerance. Plant Biol 12:689–697

    Article  CAS  PubMed  Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA et al (2010) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  CAS  Google Scholar 

  • Wan CY, Wilkins TA (1994) A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem 223:7–12

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Wang X, Chen J (2007) Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys-2/His-2-type transcription factor involved in drought and salt stress. Plant Cell Rep 26:497–506

    Article  CAS  PubMed  Google Scholar 

  • Yao W, Wang L, Wang J et al (2017) VpPUB24, a novel gene from Chinese grapevine, Vitis pseudoreticulata, targets VpICE1 to enhance cold tolerance. J Exp Bot 68:2933–2949

    Article  CAS  PubMed  Google Scholar 

  • Yu GH, Jiang LL, Ma XF et al (2014) A soybean C2H2-Type zinc finger gene GmZF1 enhanced cold tolerance in transgenic Arabidopsis. PLoS One 9:e109399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Guo X, Lei C et al (2011) Overexpression of SlCZFP1, a novel TFIIIA-type zinc finger protein from tomato, confers enhanced cold tolerance in transgenic Arabidopsis and rice. Plant Mol Biol Rep 29:185–196

    Article  CAS  Google Scholar 

  • Zhao ML, Wang JN, Shan W et al (2013) Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant Cell Environ 36:30–51

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Lang Z, Zhu JK (2015) Cold responsive gene transcription becomes more complex. Trends Plant Sci 20:466–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the National Key R&D Program of China (Grant no. 2018YFD0401304), High-level Pre-research Project of Zhejiang Shuren University (Grant No. KXJ0518107), Scientific Research Startup Project of Zhejiang Shuren University (Grant no. KXJ0517105) and Scientific Research Project of Zhejiang Provincial Education Department (Grant no. Y201840693).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Chun Fu.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Communicated by Prakash Lakshmanan.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, YC., Fu, CC. Cold-inducible MaC2H2s are associated with cold stress response of banana fruit via regulating MaICE1. Plant Cell Rep 38, 673–680 (2019). https://doi.org/10.1007/s00299-019-02399-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-019-02399-w

Keywords

Navigation