Skip to main content
Log in

Isolation and functional characterization of a circadian-regulated CONSTANS homolog (GbCO) from Ginkgo biloba

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

This is the first report to clone and functionally characterize a flowering time gene GbCO in perennial gymnosperm Ginkgo biloba. GbCO complements the co mutant of Arabidopsis, restoring normal early flowering.

Abstract

CONSTANS (CO) is a central regulator of photoperiod pathway, which channels inputs from light, day length, and circadian clock to promote the floral transition. In order to understand the role of CO in gymnosperm Ginkgo biloba, which has a long juvenile phase (15–20 years), a CO homolog (GbCO) was isolated and characterized from G. biloba. GbCO encodes a 1741-bp gene with a predicted protein of 400 amino acids with two zinc finger domains (B-box I and B-box II) and a CCT domain. Phylogenic analysis classified GbCO into the group 1a clade of CO families in accordance with the grouping scheme for Arabidopsis CO (AtCO). Southern blot analysis indicated that GbCO belongs to a multigene family in G. biloba. Real-time PCR analysis showed that GbCO was expressed in aerial parts of Ginkgo, with the highest transcript level of GbCO being observed in shoot apexes. GbCO transcript level exhibited a strong diurnal rhythm under flowering-inductive long days and peaked during early morning, suggesting that GbCO is tightly coupled to the floral inductive long-day signal. In addition, an increasing trend of GbCO transcript level was observed both in shoot tips and leaves as the shoot growth under long-day condition, whereas GbCO transcript level decreased in both tissues under short-day condition prior to growth cessation of shoot in G. biloba. GbCO complemented the Arabidopsis co-2 mutant, restoring normal early flowering. All the evidence being taken together, our findings suggested that GbCO served as a potential inducer of flowering in G. biloba.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Almada R, Cabrera N, Casaretto JA, Ruiz-Lara S, Villanueva EG (2009) VvCO and VvCOL1, two CONSTANS homologous genes, are regulated during flower induction and dormancy in grapevine buds. Plant Cell Rep 28:1193–1203

    Article  CAS  PubMed  Google Scholar 

  • Böhlenius H, Huang T, Charbonnelcampaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  PubMed  Google Scholar 

  • Borden KL (1998) RING fingers and B-boxes: zinc-binding protein-protein interaction domains. Int J Biochem Cell Biol 76:351–358

    Article  CAS  Google Scholar 

  • Chen J, Chen JY, Wang JN, Kuang JF, Shan W, Lu WJ (2012) Molecular characterization and expression profiles of MaCOL1, a CONSTANS-like gene in banana fruit. Gene 496:110–117

    Article  CAS  PubMed  Google Scholar 

  • Cheng XF, Wang ZY (2005) Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant J 43:758–768

    Article  CAS  PubMed  Google Scholar 

  • Cheng S-Y, Cheng J-H, Xu F, Ye J-B, Wang X-H (2016) Molecular cloning and expression analysis of a putative E class MADS-box gene, GbSEP, from Ginkgo biloba. J Anima Plant Sci 26:253–260

    Google Scholar 

  • Chia TYP, Müller A, Jung C, Mutasa-Göttgens ES (2008) Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus. J Exp Bot 59:2735–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Coles ND, McMullen MD, Balint-Kurti PJ, Pratt RC, Holland JB (2010) Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics 184:799–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta S, Hettiarachchi GHCM, Deng XW, Holm M (2006) Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. Plant Cell 18:70–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fornara F, Panigrahi KC, Gissot L, Sauerbrunn N, Rühl M, Jarillo JA, Coupland G (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17:75–86

    Article  CAS  PubMed  Google Scholar 

  • Fu JX, Wang Y, Dai SL (2010) Advanced research on CO genes in higher plants. Mol Plant Breed 8:1008–1016

    CAS  Google Scholar 

  • Goh LM, Barlow PJ, Yong CS (2003) Examination of antioxidant activity of Ginkgo biloba leaf infusions. Food Chem 82:275–282

    Article  CAS  Google Scholar 

  • González-Schain ND, Díaz-Mendoza M, Żurczak M, Suárez-López P (2012) Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner. Plant J 70:678–690

    Article  PubMed  Google Scholar 

  • Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009) The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann Bot 103:1165–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 131:1855–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan R, Zhao Y, Zhang H, Fan G, Liu X, Zhou W, Shi C, Wang J, Liu W, Liang X, Fu Y, Ma K, Zhao L, Zhang F, Lu Z, Lee SMY, Xu X, Wang J, Yang H, Fu C, Ge S, Chen W (2016) Draft genome of the living fossil Ginkgo biloba. GigaScience 5:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo JL, Yang Q, Liang F, Xing YJ, Wang Z (2007) Molecular cloning and expression analysis of a novel CONSTANS-like gene from potato. Biochemistry 72:1241–1246

    CAS  PubMed  Google Scholar 

  • Hanano S, Goto K (2011) Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 23:3172–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    Article  CAS  PubMed  Google Scholar 

  • Holefors A, Opseth L, Rosnes AKR, Ripel L, Snipen L, Fossdal CG, Olsen JE (2009) Identification of PaCOL1 and PaCOL2, two CONSTANS-like genes showing decreased transcript levels preceding short day induced growth cessation in Norway spruce. Plant Physiol Biochem 47:105–115

    Article  CAS  PubMed  Google Scholar 

  • Hsu CY, Adams JP, No K, Liang H, Meilan R, Pechanova O, Barakat A, Carlson JE, Page GP, Yuceer C (2012) Overexpression of Constans homologs CO1 and CO2 fails to alter normal reproductive onset and fall bud set in woody perennial poplar. PLoS One 7:e45448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imaizumi T (2010) Arabidopsis circadian clock and photoperiodism: time to think about location. Curr Opin Plant Biol 13:83–89

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426:302–306

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309:293–297

    Article  CAS  PubMed  Google Scholar 

  • Itoh H, Izawa T (2013) The coincidence of critical day length recognition for florigen gene expression and floral transition under long-day conditions in rice. Mol Plant 6:635–649

    Article  CAS  PubMed  Google Scholar 

  • Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell. 16:S1–S17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang S, Marchal V, Panigrahi KC, Wenkel S, Soppe W, Deng XW, Valverde F, Coupland G (2008) Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J 27:1277–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna R, Kronmiller B, Maszle DR, Coupland G, Holm M, Mizuno T, Wu SH (2009) The Arabidopsis B-box zinc finger family. Plant Cell 21:3416–3420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi R, Kawahigashi H, Oshima M, Ando T, Handa H (2012) The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley. J Exp Bot 63:773–784

    Article  CAS  PubMed  Google Scholar 

  • Kim SK, Yun CH, Lee JH, Jang YH, Park HY, Kim JK (2008) OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice. Planta 228:355–365

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Weigel D (2007) Move on up, it’s time for change mobile signals controlling photoperiod-dependent flowering. Gene Dev 21:2371–2384

    Article  CAS  PubMed  Google Scholar 

  • Lagercrantz U, Axelsson T (2000) Rapid evolution of the family of CONSTANS LIKE genes in plants. Mol Biol Evol 17:1499–1507

    Article  CAS  PubMed  Google Scholar 

  • Ledger S, Strayer C, Ashton F, Kay SA, Putterill J (2001) Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J 26:15–22

    Article  CAS  PubMed  Google Scholar 

  • Martin J, Storgaard M, Andersen CH, Nielsen KK (2004) Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog. Plant Mol Biol 56:159–169

    Article  CAS  PubMed  Google Scholar 

  • Masaki T, Tsukagoshi H, Mitsui N, Nishii T, Hattori T, Morikami A, Nakamura K (2005) Activation tagging of a gene for a protein with novel class of CCT-domain activates expression of a subset of sugar-inducible genes in Arabidopsis thaliana. Plant J 43:142–152

    Article  CAS  PubMed  Google Scholar 

  • Miller TA, Muslin EH, Dorweiler JE (2008) A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods. Planta 227:1377–1388

    Article  CAS  PubMed  Google Scholar 

  • Nakamichi N, Kita M, Ito S, Sato E, Yamashino T, Mizuno T (2005) The Arabidopsis pseudo-response regulators, PRR5 and PRR7, coordinately play essential roles for circadian clock function. Plant Cell Physiol 46:609–619

    Article  CAS  PubMed  Google Scholar 

  • Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y (2003) Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J 36:82–93

    Article  CAS  PubMed  Google Scholar 

  • Onouchi H, Igeño MI, Périlleux C, Graves K, Coupland G (2000) Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12:885–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857

    Article  CAS  PubMed  Google Scholar 

  • Robert LS, Robson F, Sharpe A, Lydiate D, Coupland G (1998) Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol Biol 37:763–772

    Article  CAS  PubMed  Google Scholar 

  • Robson F, Costa MMR, Hepworth SR, Vizir I, Reeves PH, Putterill J, Coupland G (2001) Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J 28:619–631

    Article  CAS  PubMed  Google Scholar 

  • Salazar JD, Saithong T, Brown PE, Foreman J, Locke JC, Halliday KJ, Carré IA, Rand DA, Millar AJ (2009) Prediction of photoperiodic regulators from quantitative gene circuit models. Cell 139:1170–1179

    Article  CAS  PubMed  Google Scholar 

  • Salomé PA, To JP, Kieber JJ, McClung CR (2006) Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period. Plant Cell 18:55–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu M, Ichikawa K, Aoki S (2004) Photoperiod-regulated expression of the PpCOL1 gene encoding a homolog of CO/COL proteins in the moss Physcomitrella patens. Biochem Biophy Res Commun 324:1296–1301

    Article  CAS  Google Scholar 

  • Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T (2012) FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336:1045–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod-and temperature-sensing in leaves. Trends Plant Sci 18:575–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    Article  PubMed  Google Scholar 

  • Tiwari SB, Shen Y, Chang HC, Hou Y, Harris A, Ma SF, McPartland M, Hymus GJ, Adam L, Marion C, Belachew A, Repetti PP, Reuber TL, Ratcliffe OJ (2010) The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol 187:57–66

    Article  CAS  PubMed  Google Scholar 

  • Torok M, Etkin LD (2001) Two B or not two B? Overview of the rapidly expanding B-box family of proteins. Differentiation 67:63–71

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H, Taoka KI, Shimamoto K (2011) Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol 14:45–52

    Article  CAS  PubMed  Google Scholar 

  • Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573–594

    Article  CAS  PubMed  Google Scholar 

  • Valverde F (2011) CONSTANS and the evolutionary origin of photoperiodic timing of flowering. J Exp Bot 62:2453–2463

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Cheng J, Xu F, Li X, Zhang W, Liao Y, Cheng S, Li X (2015) Molecular cloning and expression analysis of a MADS-Box gene (GbMADS2) from Ginkgo biloba. Not Bot Horti Agrobo 43:19–24

    Google Scholar 

  • Wong ACS, Hecht VFG, Picard K, Diwadkar P, Laurie RE, Wen J, Mysore K, Macknight RC, Weller JL (2013) Isolation and functional analysis of CONSTANS-like genes suggests that a central role for CONSTANS in flowering time control is not evolutionarily conserved in Medicago truncatula. Front Plant Sci 5:486

    Google Scholar 

  • Wu F, Price BW, Haider W, Seufferheld G, Nelson R, Hanzawa Y (2014) Functional and evolutionary characterization of the CONSTANS gene family in short-day photoperiodic flowering in soybean. PLoS One 9:e85754

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang S, Weers BD, Morishige DT, Mullet JE (2014) CONSTANS is a photoperiod regulated activator of flowering in sorghum. BMC Plant Biol 14:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang F, Xu F, Wang X, Liao Y, Chen Q, Meng X (2016) Characterization and functional analysis of a MADS-box transcriptionfactor gene (GbMADS9) from Ginkgo biloba. Sci Hortic 212:104–114

    Article  CAS  Google Scholar 

  • Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–312

    Article  CAS  PubMed  Google Scholar 

  • Yu LH, Zhang CS, Liang H (2006) Extract of DNA from ginkgo leaves and its RAPD amplification. Biotechnol Bulletin 25:81–84

    Google Scholar 

  • Zhou ZY, Zheng SL (2003) Palaeobiology: the missing link in Ginkgo evolution—the modern maidenhair tree has barely changed since the days of the dinosaurs. Nature 423:821–822

    Article  CAS  PubMed  Google Scholar 

  • Zobell O, Coupland G, Reiss B (2005) The family of CONSTANS-like genes in Physcomitrella patens. Plant Biol 7:266–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31670608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Ying-Tang Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Mao, D., Liu, X. et al. Isolation and functional characterization of a circadian-regulated CONSTANS homolog (GbCO) from Ginkgo biloba . Plant Cell Rep 36, 1387–1399 (2017). https://doi.org/10.1007/s00299-017-2162-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2162-8

Keywords

Navigation