Skip to main content
Log in

Novel 9-cis/all-trans β-carotene isomerases from plastidic oil bodies in Dunaliella bardawil catalyze the conversion of all-trans to 9-cis β-carotene

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

We identified and demonstrated the function of 9-cis/all-trans β-carotene isomerases in plastidic globules of Dunaliella bardawil, the species accumulating the highest levels of 9-cis β-carotene that is essential for humans.

Abstract

The halotolerant alga Dunaliella bardawil is unique in that it accumulates under light stress high levels of β-carotene in plastidic lipid globules. The pigment is composed of two major isomers: all-trans β-carotene, the common natural form of this pigment, and 9-cis β-carotene. The biosynthetic pathway of β-carotene is known, but it is not clear how the 9-cis isomer is formed. We identified in plastidic lipid globules that were isolated from D. bardawil two proteins with high sequence homology to the D27 protein—a 9-cis/all-trans β-carotene isomerase from rice (Alder et al. Science 335:1348–1351, 2012). The proteins are enriched in the oil globules by 6- to 17-fold compared to chloroplast proteins. The expression of the corresponding genes, 9-cis-βC-iso1 and 9-cis-βC-iso2, is enhanced under light stress. The synthetic proteins catalyze in vitro conversion of all-trans to 9-cis β-carotene. Expression of the 9-cis-βC-iso1 or of 9-cis-βC-iso2 genes in an E. coli mutant line that harbors β-carotene biosynthesis genes enhanced the conversion of all-trans into 9-cis β-carotene. These results suggest that 9-cis-βC-ISO1 and 9-cis-βC-ISO2 proteins are responsible for the formation of 9-cis β-carotene in D. bardawil under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alder A, Jamit M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltran J, Kloss B, Hosler JP, Geng J, Liu A, Modi A, Dawson JH, Sono M, Shumskaya M, Ampomah-Dwamena C, Love JD, Wurtzel ET (2015) Control of carotenoid biosynthesis through a heme-based cis-trans isomerase. Nat Chem Biol 11:598–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Amotz A, Katz A, Avron M (1982) Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene rich globules from Dunaliella bardawil (Chlorophyceae). J Phycol 18:529–537

    Article  CAS  Google Scholar 

  • Breitenbach J, Sandmann G (2005) ζ-carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene. Planta 220:785–793

    Article  CAS  PubMed  Google Scholar 

  • Bruno M, Al-Babili S (2016) On the substrate specificity of the rice strigolactone biosynthesis enzyme DWARF27. Planta 243:1429–1440

    Article  CAS  PubMed  Google Scholar 

  • Davidi L, Katz A, Pick U (2012) Characterization of major lipid droplet proteins from Dunaliella. Planta 236:19–33

    Article  CAS  PubMed  Google Scholar 

  • Davidi L, Shimoni E, Khozin-Goldberg I, Zamir A, Pick U (2014) Origin of β-carotene-rich plastoglobuli in Dunaliella bardawil. J Physiol 164:2139–2156

    CAS  Google Scholar 

  • Davidi L, Levin Y, Ben-Dor S, Pick U (2015) Proteome analysis of cytoplasmatic and plastidic β-carotene lipid droplets in Dunaliella bardawil. Plant Physiol 167:60–79

    Article  CAS  PubMed  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny. fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

  • Eroglu A, Harrison EH (2013) Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids. J Lipid Res 54:1719–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harari A, Abecassis R, Relevi N, Levi Z, Ben-Amotz A, Kamari Y, Harats D, Shaish A (2013) Prevention of atherosclerosis progression by 9-cis β-carotene rich alga Dunaliella in apoE-deficient mice. Biomed Res Int 169517. doi:10.1155/2013/169517PMID:24175283.

  • Jin ES, Polle JEW (2009) Carotenoid biosynthesis in Dunaliella (Chlorophyta). In: Ben-Amotz A, Polle JEW, Rao DVS (eds) The alga Dunaliella, biodiversity, physiology and biotechnology. Science Publishers, Enfield, NH, pp 147–172

  • Khoo HE, Prasad KN, Kong KW, Jiang Y, Ismail A (2011) Carotenoids and their isomers: color pigments in fruits and vegetables. Molecules 16:1710–1738

    Article  CAS  PubMed  Google Scholar 

  • Kuki M, Koyama Y, Nagae H (1991) Triplet-sensitized and thermal isomerization of all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of β-carotene: configurational dependence of the quantum yield of isomerization via T1 state. J Phys Chem 95:7171–7180

    Article  CAS  Google Scholar 

  • Lin H, Wang R, Quia Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactone, regulates rice tiller bud outgrowth. Plant Cell 21:1512–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotan T, Hirschberg J (1995) Cloning and expression in Escherichia coli of the gene encoding β-C-4-oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett 364:125–128

    Article  CAS  PubMed  Google Scholar 

  • Marx M, Stuparic M, Scheiber A, Carle R (2003) Effects of thermal processing on trans-cis isomerization of β-carotene in carrot juices and carotene-containing preparations. Food Chem 83:609–617

    Article  CAS  Google Scholar 

  • Pastorino U (1997) β-carotene and the risk of lung cancer. J Natl Cancer Inst 89:456–457

    Article  CAS  PubMed  Google Scholar 

  • Plutzky J (2011) The PPAR-RXR transcriptional complex in vasculature: energy in the balance. Crit Res 108: 1002–1016

  • Rotenstreich Y, Harats D, Shaish A, Pras E, Belkin N (2010) Treatment of retinal dystrophy, fundus albipunctatus, with oral 9-cis-(beta)-carotene. Br J Ophtalmol 61621. doi:10.1136/bjo.2009.167049.

  • Rotenstreich Y, Belkin N, Sadetzki S, Chertit A, Ferman-Attar G, Sher I, Harari A, Shaish A, Harats D (2013) Treatment with 9-cis β-carotene-rich powder in patients with retinitis pigmentosa: a randomized crossover trial. JAMA Ophtalmol 131:985–992

  • Schreiber A, Carle R (2005) Occurrence of carotenoid cis-isomers in food: technological, analytical, and nutritional implications. Trends Food Sci Technol 16: 416–422.

  • Shaish A, Ben-Amotz A, Avron M (1990) Effect of inhibitors on the formation of stereoisomers in the biosynthesis of β-carotene in Dunaliella bardawil. Plant Cell Physiol 31:689–696

    CAS  Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  PubMed  Google Scholar 

  • Tang YC, Chen BH (2000) Pigment change of freeze-dried carotenoid powder during storage. Food Chem 69:11–17

    Article  CAS  Google Scholar 

  • Vasquez-Caicedo AL, Schilling S, Carle R, Neidhart S (2007) Effect of termal processing and food matrix on beta-carotene stability and enzyme inactivation during transformation of mangoes into puree and nectar. Food Chem 102:1172–1186

    Article  CAS  Google Scholar 

  • Wittkop T, Emig D, Truss A, Albrecht M, Böcker S, Baumbach J (2011) Comprehensive cluster analysis with transitivity clustering. Nat Protoc 6:285–295

    Article  CAS  PubMed  Google Scholar 

  • Zolberg Relevy N, Bechor S, Harari A, Ben-Amotz A, Kamari Y, Harats D, Shaish A (2015) The inhibition of macrophage foam cell formation by 9-cis β-carotene is driven by BCMO1 activity. PlosOne doi:10.1371/journal.pone.0115272

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Pick.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Youn-Il Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidi, L., Pick, U. Novel 9-cis/all-trans β-carotene isomerases from plastidic oil bodies in Dunaliella bardawil catalyze the conversion of all-trans to 9-cis β-carotene. Plant Cell Rep 36, 807–814 (2017). https://doi.org/10.1007/s00299-017-2110-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2110-7

Keywords

Navigation