Skip to main content
Log in

Characterization of major lipid droplet proteins from Dunaliella

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Many green algal species can accumulate large amounts of triacylglycerides (TAG) under nutrient deprivation, making them a potential source for production of biodiesel. TAG are organized in cytoplasmic lipid bodies, which contain a major lipid droplet protein termed MLDP. Green algae MLDP differ in sequence from plant oleosins and from animal perilipins, and their structure and function are not clear. In this study, we describe the isolation of MLDP from three species of the extreme halotolerant green algae Dunaliella. Sequence alignment with other green algae MLDP proteins identified a conserved 4-proline domain that may be considered as a signature domain of Volvocales green algae MLDP. Gold immunolabeling localized MLDP at the surface of lipid droplets in D. salina. The induction of MLDP by nitrogen deprivation is kinetically correlated with TAG accumulation, and inhibition of TAG biosynthesis impairs MLDP accumulation suggesting that MLDP induction is co-regulated with TAG accumulation. These results can lead to a better understanding of the structure and function of Volvocales green algae MLDP proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AA:

Amino acids

DMF:

Dimethylformamide

EDTA:

Ethylenediaminetetraacetic acid

GRAVY:

Grand average of hydropathy value

GSP:

Gene-specific primers

NGSP:

Nested gene-specific primers

KLH:

Keyhole limphet haemocyanine

MLDP:

Major lipid droplet protein

NR:

Nile red

PAGE:

Polyacrylamide gel electrophoresis

PAT:

Perilipin, adipophilin, TIP47, S3-12 and OXPAT

PBS:

Phosphate buffered saline

RACE:

Rapid amplification of the cDNA ends

RFU:

Relative fluorescence units

SDS:

Sodium dodecylsulfate

TAG:

Triacylglycerides

TLC:

Thin-layer chromatography

References

  • Abd El-Baky HH, El Baz FK, El-Baroty GS (2004) Production of antioxidant by the green alga Dunaliella salina. Int J Agric Biol 6:49–57

    CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Avron A, Ben-Amotz A (1992) Dunaliella: physiology, biochemistry and biotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Ben-Amotz A, Katz A, Avron M (1982) Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene-rich globules from Dunaliella bardawil. J Phycol 18:529–537

    Article  CAS  Google Scholar 

  • Ben-Amotz A, Shaish A, Avron M (1989) Mode of action of the massively accumulated beta-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiol 91:1040–1043

    Article  PubMed  CAS  Google Scholar 

  • Berges JA, Charlebois DO, Mauzerall DC, Falkowski PG (1996) Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol 110:689–696

    PubMed  CAS  Google Scholar 

  • Bickel PE, Tansey JT, Welte MA (2009) PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta 1791:419–440

    PubMed  CAS  Google Scholar 

  • Cohen Z, Khozin-Goldberg I, Adlerstein D, Bigogno C (2000) The role of triacylglycerol as a reservoir of polyunsaturated fatty acids for the rapid production of chloroplastic lipids in certain microalgae. Biochem Soc Trans 28:740–743

    Article  PubMed  CAS  Google Scholar 

  • Ducharme NA, Bickel PE (2008) Lipid droplets in lipogenesis and lipolysis. Endocrinology 149:942–949

    Article  PubMed  CAS  Google Scholar 

  • Frandsen GI, Mundy J, Tzen JT (2001) Oil bodies and their associated proteins, oleosin and caleosin. Physiol Plant 112:301–307

    Article  PubMed  CAS  Google Scholar 

  • Froissard M, D’Andrea S, Boulard C, Chardot T (2009) Heterologous expression of AtClo1, a plant oil body protein, induces lipid accumulation in yeast. FEMS Yeast Res 9:428–438

    Article  PubMed  CAS  Google Scholar 

  • Garcia A, Sekowski A, Subramanian V, Brasaemle DL (2003) The central domain is required to target and anchor perilipin A to lipid droplets. J Biol Chem 278:625–635

    Article  PubMed  CAS  Google Scholar 

  • Gaude N, Brehelin C, Tischendorf G, Kessler F, Dormann P (2007) Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters. Plant J 49:729–739

    Article  PubMed  CAS  Google Scholar 

  • Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic Acids Res 38:W695–W699

    Article  PubMed  CAS  Google Scholar 

  • Guarnieri MT, Nag A, Smolinski SL, Darzins A, Seibert M, Pienkos PT (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS One 6:e25851

    Article  PubMed  CAS  Google Scholar 

  • Guermeur Y, Paugam-Moisy H, Gallinari P (1998) Multivariate linear regression on classifier outputs: a capacity study. Proceeding of ICANN’98, pp 693–698

  • Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, Wong JS, Vale RD, Walter P, Farese RV (2008) Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453:657–661

    Article  PubMed  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  PubMed  CAS  Google Scholar 

  • Handa S, Nakahara M, Tsubota H, Deguchi H, Nakano T (2003) A new aerial alga, Stichococcus ampulliformis sp. nov. (Trebouxiophyceae, Chlorophyta) from Japan. Phycol Res 51:203–210

    Article  Google Scholar 

  • Harwood JL, Guschina IA (2009) The versatility of algae and their lipid metabolism. Biochimie 91:679–684

    Article  PubMed  CAS  Google Scholar 

  • Hsieh K, Huang A (2004) Endoplasmic reticulum, oleosins, and oils in seeds and tapetum cell. Plant Physiol 136:3427–3434

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  PubMed  CAS  Google Scholar 

  • Huang AH (1992) Oil bodies and oleosins in seeds. Annu Rev Plant Physiol Plant Mol Biol 43:177–200

    Article  CAS  Google Scholar 

  • Huang AH (1996) Oleosins and oil bodies in seeds and other organs. Plant Physiol 110:1055–1061

    Article  PubMed  CAS  Google Scholar 

  • Huesemann MH, Benemann JR (2009) Biofuels from microalgae:review of products, processes and potential, with special focus on Dunaliella sp. In: Ben-Amotz A, Polle JEW, Subba Rao DV (eds) The alga Dunaliella: biodiversity, physiology, genomics, and biotechnology. Science Publishers, Enfield, pp 445–474

  • James GO, Hocart CH, Hillier W, Chen H, Kordbacheh F, Price GD, Djordjevic MA (2011) Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresour Technol 102:3343–3351

    Article  PubMed  CAS  Google Scholar 

  • Jiménez C, Pick U (1994) Differential stereoisomer compositions of β, β-carotene in thylakoids and pigment globules in Dunaliella. J Plant Physiol 143:257–263

    Article  Google Scholar 

  • Katz A, Jimenez C, Pick U (1995) Isolation and characterization of a protein associated with carotene globules in the alga Dunaliella bardawil. Plant Physiol 108:1657–1664

    PubMed  CAS  Google Scholar 

  • Khozin-Goldberg I, Shrestha P, Cohen Z (2005) Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa. BBA 1738:63–71

    PubMed  CAS  Google Scholar 

  • Kolber Z, Zehr J, Falkowski P (1988) Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiol 88:923–929

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell 9:97–106

    Article  PubMed  CAS  Google Scholar 

  • Murphy DJ (1993) Structure, function and biogenesis of storage lipid bodies and oleosins in plants. Prog Lipid Res 32:247–280

    Article  PubMed  CAS  Google Scholar 

  • Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438

    Article  PubMed  CAS  Google Scholar 

  • Nakada T, Misawa K, Nozaki H (2008) Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Mol Phylogenet Evol 48:281–291

    Article  PubMed  CAS  Google Scholar 

  • Peled E, Leu S, Zarka A, Weiss M, Pick U, Khozin-Goldberg I, Boussiba S (2011) Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids 46:851–861

    Article  PubMed  CAS  Google Scholar 

  • Pick U, Gounaris K, Barber J (1987) Dynamics of photosystem II and its light harvesting system in response to light changes in the halotolerant alga Dunaliella salina. 85:194–198

  • Purkrtova Z, Jolivet P, Miquel M, Chardot T (2008) Structure and function of seed lipid-body-associated proteins. C R Biol 331:746–754

    Article  PubMed  CAS  Google Scholar 

  • Rabbani S, Beyer P, Lintig J, Hugueney P, Kleinig H (1998) Induced beta-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116:1239–1248

    Article  PubMed  CAS  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  PubMed  CAS  Google Scholar 

  • Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J Phycol 26:393–399

    Article  CAS  Google Scholar 

  • Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  • Schmidt MA, Herman EM (2008) Suppression of soybean oleosin produces micro-oil bodies that aggregate into oil body/ER complexes. Mol Plant 1:910–924

    Article  PubMed  CAS  Google Scholar 

  • Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light–dark cycles. J Phycol 17:374–384

    Article  CAS  Google Scholar 

  • Siloto RM, Findlay K, Lopez-Villalobos A, Yeung EC, Nykiforuk CL, Moloney MM (2006) The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell 18:1961–1974

    Article  PubMed  CAS  Google Scholar 

  • Subramanian V, Garcia A, Sekowski A, Brasaemle DL (2004) Hydrophobic sequences target and anchor perilipin A to lipid droplets. J Lipid Res 45:1983–1991

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Thompson GA Jr (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302:17–45

    PubMed  Google Scholar 

  • Tzen JT, Huang AH (1992) Surface structure and properties of plant seed oil bodies. J Cell Biol 117:327–335

    Article  PubMed  CAS  Google Scholar 

  • Zweytick D, Athenstaedt K, Daum G (2000) Intracellular lipid particles of eukaryotic cells. Biochim Biophys Acta 1469:101–120

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the following scientists at The Weizmann Institute of Science: Mr. Vladimir Kiss from the Department of Biological Chemistry for his assistance in the Confocal Microscopy studies, Dr. Eyal Shimoni from the Department of Chemical Research Support for his help in the Electron Microscopy analyses and Dr. Miriam Eisenstein, also from the Department of Chemical Research Support, for her assistance and advice in the bioinformatic analysis. We are also grateful to Dr. Inna Khozin-Goldberg and to Prof. Zvi Cohen from The Ben-Gurion University for the GC–MS fatty acid analysis. This work was supported by The Alternative Energy Research Initiative Fund at The Weizmann Institute, by the Minerva Center: Photosynthesis under stress in changing world and by The Charles and Louise Gartner fund (to UP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Pick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidi, L., Katz, A. & Pick, U. Characterization of major lipid droplet proteins from Dunaliella. Planta 236, 19–33 (2012). https://doi.org/10.1007/s00425-011-1585-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1585-7

Keywords

Navigation