Skip to main content
Log in

Improvement of soybean transformation via Agrobacterium tumefaciens methods involving α-aminooxyacetic acid and sonication treatments enlightened by gene expression profile analysis

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Antagonists and sonication treatment relieved the structural barriers of Agrobacterium entering into cells; hindered signal perception and transmission; alleviated defense responses and increased cell susceptibility to Agrobacterium infection.

Abstract

Soybean gene expression analysis was performed to elucidate the general response of soybean plant to Agrobacterium at an early stage of infection. Agrobacterium infection stimulated the PAMPs-triggered immunity (BRI1, BAK1, BZR1, FLS2 and EFR) and effector-triggered immunity (RPM1, RPS2, RPS5, RIN4, and PBS1); up-regulated the transcript factors (WRKY25, WRKY29, MEKK1P, MKK4/5P and MYC2) in MAPK pathway; strengthened the biosynthesis of flavonoid and isoflavonoid in the second metabolism; finally led to a fierce defense response of soybean to Agrobacterium infection and thereby lower transformation efficiency. To overcome it, antagonist α-aminooxyacetic acid (AOA) and sonication treatment along with Agrobacterium infection were applied. This novel method dramatically decreased the expression of genes coding for F3′H, HCT, β-glucosidase and IF7GT, etc., which are important for isoflavone biosynthesis or the interconversion of aglycones and glycon; genes coding for peroxidase, FLS2, PBS1 and transcription factor MYC2, etc., which are important components in plant–pathogen interaction; and genes coding for GPAT and α-l-fucosidase, which are important in polyesters formation in cell membrane and the degradation of fucose-containing glycoproteins and glycolipids on the external surface of cell membrane, respectively. This analysis implied that AOA and sonication treatment not only relieved the structural membrane barriers of Agrobacterium entering into cells, but also hindered the perception of ‘invasion’ signal on cell membrane and intercellular signal transmission, thus effectively alleviated the defense responses and increased the cell susceptibility to Agrobacterium infection. All these factors benefit the transformation process; other measures should also be further explored to improve soybean transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anand A, Uppalapati SR, Ryu CM, Allen SN, Kang L, Tang Y, Mysore KS (2008) Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146:703–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983

    Article  CAS  PubMed  Google Scholar 

  • Atif RM, Patat-Ochatt EM, Svabova L et al (2013) Gene transfer in legumes. Prog Bot 74:37–100

    Article  CAS  Google Scholar 

  • Chen XC, Zhou YL (2013) Molecular mechanism underlying BAK1 involved in plant immunity signal recognition and transduction. J Plant Genet Resour 14:1102–1107

    CAS  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JDG, Felix G, Boller T (2007) A flagellin induced complex of the receptor FLS2 and BAK1 initiates defense. Nature 448(7152):497–500

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang W, Wei ZM (2007) An optimized Agrobacterium-mediated transformation for soybean for expression of binary insect resistance genes. Plant Sci 173:381–389

    Article  CAS  Google Scholar 

  • Deeken R, Engelmann JC, Efetova M et al (2006) An integrated view of gene expression and solute profiles of Arabidopsis tumors: a genome-wide approach. Plant Cell 18:3617–3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey S, Wenig M, Langen G, Sharma S et al (2014) Bacteria-triggered systemic immunity in barley is associated with WRKY and ethylene responsive factors but not with salicylic acid. Plant Physiol 166:2133–2151

    Article  PubMed  PubMed Central  Google Scholar 

  • Ditt RF, Nester E, Comai L (2001) Plant gene expression response to Agrobacterium tumefaciens. Proc Natl Acad Sci USA 98:10954–10959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ditt RF, Nester E, Comai L (2005) The plant cell defense and Agrobacterium tumefaciens. FEMS Microbiol Lett 247:207–213

    Article  CAS  PubMed  Google Scholar 

  • Ditt RF, Kerr KF, de Figueiredo P, Delrow J, Comai L, Nester EW (2006) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant Microbe Interact 19:665–681

    Article  CAS  PubMed  Google Scholar 

  • Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H (2007) Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318:453–456

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68

    Article  CAS  PubMed  Google Scholar 

  • Gohlke J, Deeken R (2014) Plant responses to Agrobacterium tumefaciens and crown gall development. Front Plant Sci. doi:10.3389/fpls.2014.00155

    PubMed  PubMed Central  Google Scholar 

  • Graham TL, Graham MY, Subramanian S, Yu O (2007) RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues [OA]. Plant Physiol 144:728–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant M, Lamb C (2006) Systemic immunity. Curr Opin Plant Biol 9:414–420

    Article  CAS  PubMed  Google Scholar 

  • He K, Xu S, Li J (2013) BAK1 directly regulates brassinosteroid perception and BRI1 activation. J Integr Plant Biol 55:1264–1270

    Article  CAS  PubMed  Google Scholar 

  • Heese A, Hann DR, Gimenez-Ibanez S et al (2007) The receptor like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA 104:12217–12222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Institute of Shanghai Plant Physiology, Chinese Academy of Sciences, Shanghai Plant Physiology Society (China) (1999) Guide for modern plant physiology experiments. Science Press, Beijing

    Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208(4447):990–1000

    Article  CAS  PubMed  Google Scholar 

  • Lacroix B, Citovsky V (2013) The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int J Dev Biol 57:467–481

    Article  CAS  PubMed  Google Scholar 

  • Larkin KM (2001) Optimization of soybean transformation using SAAT and GFP. Wooster: OARDC/OSU 126p. (Thesis-Master)

  • Lee CW, Efetova M, Engelmann JC, Kramell R, Wasternack C, Ludwig-Müller J, Hedrich R, Deeken R (2009) Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21:2948–2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HQ, Yang H, Zhang JJ, Wan XC, Fang CB (2009) The effect of specific inhibitors of phenylalanine ammonia-lyase and 4-coumarate-CoA ligase on isoflavone biosynthesis in Kudzu cell suspension culture. Chin J Trop Crops 30(1):47–52

    Google Scholar 

  • Liu YK, Kong XP, Pan JW, Li DQ (2010) VIP1: linking Agrobacterium-mediated transformation to plant immunity? Plant Cell Rep 29:805–812

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  • Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci 10:339–346

    Article  CAS  PubMed  Google Scholar 

  • Olhoft PM, Lin K, Galbraith J, Nielsen NC (2001) The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep 20:731–737

    Article  CAS  Google Scholar 

  • Olhoft PM, Flagel E, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735

    CAS  PubMed  Google Scholar 

  • Pitzschke A (2013) Agrobacterium infection and plant defense—transformation success hangs by a thread. Front Plant Sci. doi:10.3389/fpls.2013.00519

    PubMed  PubMed Central  Google Scholar 

  • Pitzschke A, Hirt H (2010) New insights into an old story: Agrobacterium induced tumour formation in plants by plant transformation. EMBO J 29:1021–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signaling networks in plant defence. Curr Opin Plant Biol 12:421–426

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Lee LY, Gelvin SB (2014) Is VIP1 important for Agrobacterium-mediated transformation? Plant J 79:848–860

    Article  CAS  PubMed  Google Scholar 

  • Shin S, Torres-Acosta JA, Heinen SJ et al (2012) Transgenic Arabidopsis thaliana expressing a barley UDP-glucosyltransferase exhibit resistance to the mycotoxin deoxynivalenol. J Exp Bot 63:4731–4740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shockey J, Regmi A, Cotton K, Adhikari N, Browse J, Bates PD (2015) Identification of Arabidopsis GPAT9 (At5g60620) as an essential gene involved in triacylglycerol biosynthesis. Plant Physiol. doi:10.1104/pp.15.01563

    Google Scholar 

  • Subramanian S, Graham MY, Yu O, Graham TL (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 137:1345–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramoni S, Nathoo N, Klimov E, Yuan ZC (2014) Agrobacterium tumefaciens responses to plant-derived signaling molecules. Front Plant Sci 5:322. doi:10.3389/fpls.2014.00322

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun YM, Zhang YZ, Xu J, Li WB (2007) Study on hydrolysis of soybean isoflavone glucosides by β-glucosidases from Aspergillus niger. J Northeast Agric Univ 38(1):9–12

    CAS  Google Scholar 

  • Tian R, Yang Y, Wang XF (2014) Research on BAK1 of a receptor kinase. Acta Bot Boreal-Occident Sin 34(3):636–644

    CAS  Google Scholar 

  • Tsuda K, Qi Y, Nguyen LV, Bethke G, Tsuda Y, Glazebrook J, Glazebrook J, Katagiri F (2012) An efficient Agrobacterium-mediated transient transformation of Arabidopsis. Plant J 69:713–719

    Article  CAS  PubMed  Google Scholar 

  • Veena Jiang H, Doerge RW, Gelvin SB (2003) Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35:219–236

    Article  PubMed  Google Scholar 

  • von Saint Paul V, Zhang W, Kanawati B, Geist B, Faus-Keßler T, Schmitt-Kopplin P, Schäffner AR (2011) The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. Plant Cell 23:4124–4145

    Article  Google Scholar 

  • White LJ, Jothibasu K, Reese RN, Brözel VS, Subramanian S (2015) Spatio temporal influence of isoflavonoids on bacterial diversity in the soybean rhizosphere. Mol Plant Microbe Interact 28:22–29

    Article  PubMed  Google Scholar 

  • Yang H, Min DB, Huang J, Tang L, Huang Y (2012) Transformation and the defense role of BAK1 in Arabidopsis thaliana. Biotechnol Bull 8:71–75

    Google Scholar 

  • Zhang WJ, Dewey RE, Boss W, Phillippy BQ, Qu R (2013) Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. Plant Mol Biol 81:273–286

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Zhang HM, Liu ZH, Guo XL, Li HC, Li GL, Jiang CZ, Zhang MC (2015) Inhibition of isoflavone biosynthesis enhanced T-DNA delivery in soybean by improving plant–Agrobacterium tumefaciens interaction. Plant Cell Tissue Organ Cult 121:183–193

    Article  CAS  Google Scholar 

  • Zhao FX, Chen LH, Perl A, Chen SW, Ma HQ (2011) Proteomic changes in grape embryogenic callus in response to Agrobacterium tumefaciens-mediated transformation. Plant Sci 181:485–495

    Article  CAS  PubMed  Google Scholar 

  • Zhou XH, Wang K, Lv DW, Wu CJ, Li JR, Zhao P, Lin ZS, Du LP, Yan YM, Ye XG (2013) Global analysis of differentially expressed genes and proteins in the wheat callus infected by Agrobacterium tumefaciens. PLoS One 8(11):e79390. doi:10.1371/journal.pone.0079390

    Article  PubMed  PubMed Central  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Major Project for Transgenic Crops of Chinese Agriculture Ministry (Grant No. 2014ZX0800402B); Natural Science Foundation of Hebei Province, China (Grant No. C2013301033); Key project for fundamental research of Hebei Province, China (Grant No. 14962903D).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Mei Zhang or Meng-Chen Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by H. Ebinuma.

Z.-H. Liu contributed equally as the first author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2536 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YM., Liu, ZH., Yang, RJ. et al. Improvement of soybean transformation via Agrobacterium tumefaciens methods involving α-aminooxyacetic acid and sonication treatments enlightened by gene expression profile analysis. Plant Cell Rep 35, 1259–1271 (2016). https://doi.org/10.1007/s00299-016-1958-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-1958-2

Keywords

Navigation