Skip to main content

Advertisement

Log in

Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

AtWRKY53 is an early factor in drought response and activated expression of AtWRKY53 regulates stomatal movement via reduction of H 2 O 2 content and promotion of starch metabolism in guard cells.

Abstract

Drought is one of the most serious environmental factors limiting the productivity of agricultural crops worldwide. However, the mechanisms underlying drought tolerance in plants remain unclear. AtWRKY53 belongs to the group III of WRKY transcription factors. In this study, we observed both the mRNA and protein products of this gene are rapidly induced under drought conditions. Phenotypic analysis showed AtWRKY53 overexpression lines were hypersensitive to drought stress compared with Col-0 plants. The results of stomatal movement assays and abscisic acid (ABA) content detection indicated that the impaired stomatal closure of 53OV lines was independent of ABA. Further analysis found that WRKY53 regulated stomatal movement via reducing the H2O2 content and promoting the starch metabolism in guard cells. The results of quantitative real-time reverse transcriptase PCR showed that the expression levels of CAT2, CAT3 and QQS were up-regulated in 53OV lines. Chromatin immunoprecipitation assays demonstrated that AtWRKY53 can directly bind to the QQS promoter sequences, thus led to increased starch metabolism. In summary, our results indicated that the activated expression of AtWRKY53 inhibited stomatal closure by reducing H2O2 content and facilitated stomatal opening by promoting starch degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

GUS:

β-Glucuronidase

RT-PCR:

Reverse transcription-PCR

qRT-PCR:

Quantitative real-time reverse transcription-PCR

ChIP:

Chromatin immunoprecipitation

References

  • Assmann SM, Wang XQ (2001) From milliseconds to millions of years: guard cells and environmental responses. Curr Opin Plant Biol 4:421–428

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanism: getting genomics going. Curr Opin Plant Biol 9:180–188

    Article  CAS  PubMed  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Chen LG, Song Y, Li SJ, Zhang LP, Zou CS, Yu DQ (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys 1819(120):128

    Google Scholar 

  • Chen LG, Zhang LP, Li DB, Wang F, Yu DQ (2013) WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. PNAS 110(21):E1963–E1971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delhaize E, Craig S, Beaton CD (1993) Aluminum tolerance in wheat (Triticum aestivum L.) uptake and distribution of aluminum in root apices. Plant Physiol 103:685–693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ding ZJ, Yan JY, Xu XY, Yu DQ, Li GX, Zhang SQ, Zheng SJ (2014) Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis. Plant J 79:13–27

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R (2013) Abscisic acid synthesis and response. Am Soc Plant Biol 11:e0166

    Google Scholar 

  • Hinderhofer K, Zentgraf U (2001) Identification of a transcription factor specifically expressed at onset of leaf senescence. Planta 213:469–473

    Article  CAS  PubMed  Google Scholar 

  • Hu YR, Dong QY, Yu DQ (2012) Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci 185–186:288–297

    Article  PubMed  Google Scholar 

  • Hu YR, Chen LG, Wang HP, Zhang LP, Wang F, Yu DQ (2013) Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J 74:730–745

    Article  CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  PubMed  Google Scholar 

  • Jiang WB, Yu DQ (2009) Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid. BMC Plant Biol 9:96

    Article  PubMed Central  PubMed  Google Scholar 

  • Jiang YJ, Liang G, Yu DQ (2012) Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 6:1375–1388

    Article  Google Scholar 

  • Jiang YJ, Liang G, Yang SZ, Yu DQ (2014) Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell 26:230–245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jing SJ, Zhou X, Song Y, Yu DQ (2009) Heterologous expression of OsWRKY23 gene enhances pathogen defense and dark-induced leaf senescence in Arabidopsis. Plant Growth Regul 58:181–190

    Article  CAS  Google Scholar 

  • Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim T, Bohmer M, Hu H, Nishimura N, Schroeder J (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  CAS  PubMed  Google Scholar 

  • Li SJ, Fu QT, Huang WD, Yu DQ (2009a) Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep 28:683–693

    Article  CAS  PubMed  Google Scholar 

  • Li L, Forster CM, Gan QG, Nettleton D, James MG, Myers AM, Wurtele ES (2009b) Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves. Plant J 58:485–498

    Article  CAS  PubMed  Google Scholar 

  • Li SJ, Zhou X, Chen LG, Huang WD, Yu DQ (2010) Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol Cells 29:475–483

    Article  CAS  PubMed  Google Scholar 

  • Li SJ, Fu QT, Chen LG, Huang WD, Yu DQ (2011) Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237–1252

    Article  CAS  PubMed  Google Scholar 

  • Ma T, Li ML, Zhao AG, Xu X, Liu GS, Cheng LQ (2014) LcWRKY5: an unknown function gene from sheepgrass improves drought tolerance in transgenic Arabidopsis. Plant Cell Rep 33:1507–1518

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Bio 55:853–867

    Article  CAS  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant. doi:10.1111/j.1399-3054.2008.01090.x

    Google Scholar 

  • Murray SL, Ingle RA, Petersen LN, Denby KJ (2007) Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein. Mol Plant Microbe Interact 20:1431–1438

    Article  CAS  PubMed  Google Scholar 

  • Nilson SE, Assmann SM (2007) The control of transpiration: insights from Arabidopsis. Plant Physiol 143:19–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pandey S, Wang XQ, Coursol SA, Assmann SM (2002) Preparation and application of Arabidopsis thaliana guard cell protoplasts. New Phytol 153:517–526

    Article  CAS  Google Scholar 

  • Pei ZM, Kuchitsu K, Ward JM, Schwarz M, Schroeder I (1997) Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell 9:409–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Qiu YP, Yu DQ (2008) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65:35–47

    Article  Google Scholar 

  • Ren XZ, Chen ZZ, Liu Y, Zhang HR, Zhang M, Liu Q, Hong XH, Zhu JK, Gong ZZ (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63:417–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rose R, Rose CL, Omi SK, Forry KR, Durral DM, Bigg WL (1991) Starch determination by perchloric acid vs enzymes: evaluating the accuracy and precision of six colorimetric methods. J Agric Food Chem 39:2–11

    Article  CAS  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Saleh A, Alvarez-Venegas R, Avramova A (2008) An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nat Protoc 3:1018–1025

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    Article  CAS  PubMed  Google Scholar 

  • Shang Y, Yan L, Liu ZQ, Cao Z, Mei C, Xin Q, Wu FQ, Wang XF, Du SY, Jiang T, Zhang XF, Zhao R, Sun HL, Liu R, Yu YT, Zhang DP (2010) The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22:1909–1935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shimazaki K, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58:219–247

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shionzaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Taylor IB, Burbidage A, Thompson AJ (2000) Control of abscisic acid synthesis. J Exp Bot 51:1563–1574

    Article  CAS  PubMed  Google Scholar 

  • Vavasseur A, Raghavendra AS (2005) Guard cell metabolism and CO2 sensing. New Phytol 165:665–682

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu JH, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Zhang YX, Han L, Guan ZQ, Chai TY (2008) A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Rep 27:795–803

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):S165–S183

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J, Zhang J, Wang Z, Zhu QS, Wang W (2001) Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol 127:315–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu H, Chen X, Hong YY, Wang Y, Xu P, Ke SD, Liu HY, Zhu JK, Oliver DJ, Xiang CB (2008) Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 20:1134–1151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zentgraf U, Laun T, Miao Y (2010) The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana. Eur J Cell Biol 89:133–137

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Jiang YJ, Yu DQ (2011) WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Mol Cells 31:303–313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zou CS, Jiang WB, Yu DQ (2010) Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. J Exp Bot 61:3901–3914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Arabidopsis Resource Center at Ohio State University for the wrky46 and wrky53 mutants. This research was supported by the China National Natural Sciences Foundation (91417307).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diqiu Yu.

Additional information

Communicated by E. Guiderdoni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 589 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Yu, D. Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement. Plant Cell Rep 34, 1295–1306 (2015). https://doi.org/10.1007/s00299-015-1787-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1787-8

Keywords

Navigation