Skip to main content
Log in

Towards the development of better crops by genetic transformation using engineered plant chromosomes

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Plant Biotechnology involves manipulation of genetic material to develop better crops. Keeping in view the challenges being faced by humanity in terms of shortage of food and other resources, we need to continuously upgrade the genomic technologies and fine tune the existing methods. For efficient genetic transformation, Agrobacterium-mediated as well as direct delivery methods have been used successfully. However, these methods suffer from many disadvantages especially in terms of transfer of large genes, gene complexes and gene silencing. To overcome these problems, recently, some efforts have been made to develop genetic transformation systems based on engineered plant chromosomes called minichromosomes or plant artificial chromosomes. Two approaches namely, “top-down” or “bottom-up” have been used for minichromosomes. The former involves engineering of the existing chromosomes within a cell and the latter de novo assembling of chromosomes from the basic constituents. While some success has been achieved using these chromosomes as vectors for genetic transformation in maize, however, more studies are needed to extend this technology to crop plants. The present review attempts to trace the genesis of minichromosomes and discusses their potential of development into plant artificial chromosome vectors. The use of these vectors in genetic transformation will greatly ameliorate the food problem and help to achieve the UN Millennium development goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Article  Google Scholar 

  • Ananiev EV, Wu C, Chamberlin MA, Svitashev S, Schwartz C, Gordon-Kamm W, Tingey S (2009) Artificial chromosome formation in maize (Zea mays L.). Chromosoma 118:157–177

    Article  PubMed  CAS  Google Scholar 

  • Ayabe F, Katoh M, Inoue T, Kouprina N, Larionov V, Oshimura M (2005) A novel expression system for genomic DNA loci using a human artificial chromosome vector with transformation-associated recombination cloning. J Hum Genet 50:592–599

    Article  PubMed  CAS  Google Scholar 

  • Barry AE, Howman EV, Cancilla MR, Saffery R, Choo KH (1999) Sequence analysis of an 80 kb human neocentromere. Hum Mol Genet 8:217–227

    Article  PubMed  CAS  Google Scholar 

  • Baum M, Sanyal K, Mishra PK, Thaler N, Carbon J (2006) Formation of functional centromeric chromatin is specified epigenetically in Candida albicans. Proc Natl Acad Sci USA 103:14877–14882

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Yu W, Han F (2008) Plant engineered minichromosomes and artificial chromosome platforms. Cytogenet Genome Res 120:228–232

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Krishnaswamy L, Gaeta T, Masonbrink RE, Zhao C (2010) Engineered minichromosomes in plants. Crit Rev Plant Sci 29:135–147

    Article  CAS  Google Scholar 

  • Carlson SR, Rudgers GW, Zieler H, Mach JM, Luo S, Grunden E, Krol C, Copenhaver GP, Preuss D (2007) Meiotic transmission of an in vitro-assembled autonomous maize minichromosome. PLoS Genet 3:e179

    Article  Google Scholar 

  • Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    Article  PubMed  CAS  Google Scholar 

  • Csonka E, Cserpan I, Fodor K, Hollo G, Katona R, Kereso J, Praznovszky T, Szakal B, Telenius A, deJong G, Udvardy A, Hadlaczky G (2000) Novel generation of human satellite DNA based artificial chromosomes in mammalian cells. J Cell Sci 113:3207–3216

    PubMed  CAS  Google Scholar 

  • Daniell H, Singh ND, Mason H, Streatfield SJ (2009) Plant made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14:669–679

    Article  PubMed  CAS  Google Scholar 

  • Dhar MK (1991) Cytogenetic studies on some telo aneuploids of Plantago lagopus and their progeny. PhD Thesis, University of Jammu, Jammu, India

  • Dhar MK and Koul AK (1994) Genetic diversity among Plantagos XXVI. Ring chromosome aneuploids of Plantago lagopus L. Proc Indian Natl Sci Acad B60:143–149

    Google Scholar 

  • Dhar MK, Koul AK (1995) Four novel telo aneuploids of Plantago lagopus L. J Hered 86:243–245

    Google Scholar 

  • Dhar MK, Koul AK, Langer A (1990a) Genetic diversity among Plantagos. 17. A novel trisomic in Plantago lagopus. Theor Appl Genet 79:216–218

    Article  Google Scholar 

  • Dhar MK, Koul AK, Langer A (1990b) Genetic diversity among Plantagos. XII. An aneuploid of Plantago lagopus for a telocentric microchromosome. Cytologia 55:51–56

    Google Scholar 

  • Dhar MK, Friebe B, Koul AK, Gill BS (2002) Origin of an apparent B chromosome by mutation, chromosome fragmentation and specific DNA sequence amplification. Chromosoma 111:332–340

    Article  PubMed  CAS  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Farr C, Fantes J, Goodfellow P, Cooke H (1991) Functional reintroduction of human telomeres into mammalian cells. Proc Natl Acad Sci USA 88:7006–7010

    Article  PubMed  CAS  Google Scholar 

  • Gindullis F, Dechyeva D, Schmidt T (2001a) Construction and characterization of a BAC library for the molecular dissection of a single wild beet centromere and sugar beet (Beta vulgaris) genome analysis. Genome 44:846–855

    Article  PubMed  CAS  Google Scholar 

  • Gindullis F, Desel C, Galasso I, Schmidt T (2001b) The large-scale organization of the centromeric region in Beta species. Genome Res 11:253–265

    Article  PubMed  CAS  Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plants-the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155

    Article  PubMed  CAS  Google Scholar 

  • Han F, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA 103:3238–3243

    Article  PubMed  CAS  Google Scholar 

  • Han F, Gao Z, Yu W, Birchler JA (2007) Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize. Plant Cell 19:3853–3863

    Article  PubMed  CAS  Google Scholar 

  • Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 15:345–355

    Article  PubMed  CAS  Google Scholar 

  • Houben A, Schubert I (2007) Engineered plant minichromosomes: a resurrection of B chromosomes? Plant Cell 19:2323–2327

    Article  PubMed  CAS  Google Scholar 

  • Ikeno M, Grimes B, Okazaki T, Nakano M, Saitoh K, Hoshino H, McGill NI, Cooke H, Masumoto H (1998) Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 16:431–439

    Article  PubMed  CAS  Google Scholar 

  • Irvine DV, Shaw ML, Choo KH, Saffery R (2005) Engineering chromosomes for delivery of therapeutic genes. Trends Biotechnol 23:575–583

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Melo JR, Nagaki K, Talbert P, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Lamb JC, Vega JM, Dawe RK, Birchler JA, Jiang J (2005) Molecular and functional dissection of the maize B chromosome centromere. Plant Cell 17:1412–1423

    Article  PubMed  CAS  Google Scholar 

  • Jones RN, Viegas W, Houben A (2008) A century of B chromosomes in plants: so what? Ann Bot 101:767–775

    Article  PubMed  Google Scholar 

  • Karpen GH, Allshire RC (1997) The case for epigenetic effects on centromere identity and function. Trends Genet 13:489–496

    Article  PubMed  CAS  Google Scholar 

  • Kasz’as E, Birchler JA (1996) Misdivision analysis of centromere structure in maize. EMBO J 15:5246–5255

    Google Scholar 

  • Kasz’as E, Birchler JA (1998) Meiotic transmission rates correlate with physical features of rearranged centromeres in maize. Genetics 150:1683–1692

    Google Scholar 

  • Kato A, Zheng YZ, Auger DL, Phelps-Durr T, Bauer MJ, Lamb JC, Birchler JA (2005) Minichromosomes derived from the B chromosome of maize. Cytogenet Genome Res 109:156–165

    Article  PubMed  CAS  Google Scholar 

  • Kereso J, Praznovszky T, Cserpán I, Fodor K, Katona R, Csonka E, Fátyol K, Holló G, Szeles A, Ross AR, Sumner AT, Szalay AA, Hadlaczky G (1996) De novo chromosome formations by large scale amplification of the centromeric region of mouse chromosomes. Chromosome Res 4:226–239

    Article  PubMed  CAS  Google Scholar 

  • Khush GS (1973) Cytogenetics of aneuploids. Academic Press, New York

    Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2001) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4. DNA Res 8:285–290

    Article  PubMed  CAS  Google Scholar 

  • Lewin B (1998) The mistique of epigenetics. Cell 93:301–303

    Article  PubMed  CAS  Google Scholar 

  • Lim HN, Farr CJ (2004) Chromosome-based vectors for mammalian cells: an overview. Methods Mol Biol 240:167–186

    PubMed  CAS  Google Scholar 

  • McClintock B (1932) A correlation of ring-shaped chromosomes with variegation in Zea mays. Proc Natl Acad Sci USA 18:677–681

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1938) The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring shaped chromosomes. Genetics 23:315–376

    PubMed  CAS  Google Scholar 

  • McClintock B (1939) The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci USA 25:405–416

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26:234–282

    PubMed  CAS  Google Scholar 

  • Murata M, Shibata F, Yokota E (2006) The origin, meiotic behavior, and transmission of a novel minichromosome in Arabidopsis thaliana. Chromosoma 115:311–319

    Article  PubMed  Google Scholar 

  • Murphy TD, Karpen GH (1995) Interactions between the nod + kinesin-like gene and extracentromeric sequences are required for transmission of a Drosophila mini-chromosome. Cell 81:139–148

    Article  PubMed  CAS  Google Scholar 

  • Murray AW, Szostak JW (1983) Construction of artificial chromosomes in yeast. Nature 305:189–193

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Song J, Stupar RM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK, Buell CR, Jiang J (2003) Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163:759–770

    PubMed  CAS  Google Scholar 

  • Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102:9842–9847

    Article  PubMed  CAS  Google Scholar 

  • Opabode JT (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotech Mol Biol Rev 1:12–20

    Google Scholar 

  • Paine JA, Shipton CA, Chagger S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotech 23:482–487

    Article  CAS  Google Scholar 

  • Phan BH, Jin W, Topp CN, Zhong CX, Jiang J, Dawe RK, Parrott WA (2007) Transformation of rice with long DNA segments consisting of random genomic DNA or centromere-specific DNA. Transgenic Res 16:341–351

    Article  PubMed  CAS  Google Scholar 

  • Ronceret A, Bozza CG, Pawlowski WP (2007) Naughty behavior of maize minichromosomes in meiosis. Plant Cell 19:835–3837

    Article  Google Scholar 

  • Saffery R, Wong LH, Irvine DV, Bateman MA, Griffiths B, Cutts SM, Cancilla MR, Cedron AC, Stafford AJ, Choo KHA (2001) Construction of neocentromere-based human minichromosomes by telomere-associated chromosomal truncation. Proc Natl Acad Sci USA 98:5705–5710

    Article  PubMed  CAS  Google Scholar 

  • Schubert I (2001) Alteration of chromosome numbers by generation of minichromosomes—is there a lower limit of chromosome size for stable s segregation? Cytogenet Cell Genet 93:175–181

    Article  PubMed  CAS  Google Scholar 

  • Shibata F, Murata M (2004) Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana. J Cell Sci 117:2963–2970

    Article  PubMed  CAS  Google Scholar 

  • Vega JM, Yu W, Han F, Kato A, Peters EM, Zhang ZJ, Birchler JA (2008) Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors. Plant Mol Biol 66:587–598

    Article  PubMed  CAS  Google Scholar 

  • Vig BK (1994) Do specific nucleotide bases constitute the centromere? Mutat Res 309:1–10

    Article  PubMed  CAS  Google Scholar 

  • Willard HF (2001) Neocentromeres and human artificial chromosomes: an unnatural act. Proc Natl Acad Sci USA 98:5374–5376

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Lamb JC, Han F, Birchler JA (2006) Telomere mediated chromosomal truncation in maize. Proc Natl Acad Sci USA 103:17331–17336

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Han F, Gao Z, Vega JM, Birchler J (2007) Construction and behavior of engineered mini-chromosomes in maize. Proc Natl Acad Sci USA 104:8924–8929

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y-Z, Roseman RR, Carlson WR (1999) Time course study of the chromosome-type breakage-fusion bridge cycle in maize. Genetics 153:1435–1444

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Science and Technology, Govt. of India for funding the research project on novel chromosome of Plantago. Thanks are also due to the anonymous reviewers for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Dhar.

Additional information

Communicated by R. Reski.

A contribution to the Special Issue: Plant Biotechnology in Support of the Millennium Development Goals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhar, M.K., Kaul, S. & Kour, J. Towards the development of better crops by genetic transformation using engineered plant chromosomes. Plant Cell Rep 30, 799–806 (2011). https://doi.org/10.1007/s00299-011-1001-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1001-6

Keywords

Navigation