Skip to main content
Log in

Mapping of the genes for dioecism and monoecism in Spinacia oleracea L.: evidence that both genes are closely linked

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Spinach is basically a dioecious species, with occasional monoecious plants in some populations. Sexual dimorphism in dioecious spinach plants is controlled by an allelic pair termed X and Y located on the short arm of the longest chromosome (x = 6). Ten AFLP markers, closely linked to the X/Y locus, were identified using bulked segregant analysis, four of which were revealed to co-segregate with Y in the present mapping population. We mapped the AFLP markers and two known male-specific DNAs to a 13.4 cM region encompassing the locus. These markers will be the basis for positional cloning of the sex-determination gene. We also showed that a single, incompletely dominant gene is responsible for the highly staminate monoecious character. The gene was found to be located at a distance of 4.3 cM from microsatellite marker SO4, which mapped 1.6 cM from the X/Y locus. This indicates that the monoecious gene seems not to be allelic to but closely linked to the X/Y gene pair. SO4 will enable breeders to efficiently select highly male monoecious plants for preferential use as the pollen parent for hybrid seed production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akamatsu T, Suzuki T, Uchimiya H (1998) Determination of male or female of spinach by using DNA marker. Sakata no tane KK, Japan

    Google Scholar 

  • Armstrong SJ, Filatov DA (2008) A cytogenetic view of sex chromosome evolution in plants. Cytogenet Genome Res 120:241–246

    Article  PubMed  CAS  Google Scholar 

  • Bemis WP, Wilson GB (1953) A new hypothesis explaining the genetics of sex determination in Spinacia oleracea L. J Hered 44:91–95

    Google Scholar 

  • Bergero R, Charlesworth D (2009) The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 24:94–102

    Article  PubMed  Google Scholar 

  • Bernasconi G, Antonovics J, Biere A, Charlesworth D, Delph LF, Filatov D, Giraud T, Hood ME, Marais GAB, McCauley D, Pannell JR, Shykoff JA, Vyskot B, Wolfe LM, Widmer A (2009) Silene as a model system in ecology and evolution. Heredity 103:5–14

    Article  PubMed  CAS  Google Scholar 

  • Chailakhyan M (1979) Genetic and hormonal regulation of growth, flowering, and sex expression in spinach. Am J Bot 66:717–736

    Article  CAS  Google Scholar 

  • Charlesworth B (1991) The evolution of sex-chromosomes. Science 251:1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth D (2002) Plant sex determination and sex chromosomes. Heredity 94–101

  • Charlesworth D (2004) Plant evolution: modern sex chromosomes. Curr Biol 271–273

  • Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh leaf tissue. Focus 12:13–15

    Google Scholar 

  • Ellis JR, Janick J (1960) The chromosomes of Spinacia oleracea. Am J Bot 47:210–214

    Article  Google Scholar 

  • Golenberg EM (2000) Floral developmental regulation and sexual lability in spinach. Am Zool 40:1031s

    Google Scholar 

  • Iizuka M, Janick J (1962) Cytogenetic analysis of sex determination in Spinacia oleracea. Genetics 47:1225–1241

    PubMed  CAS  Google Scholar 

  • Iizuka M, Janick J (1963) Sex chromosomes translocations in Spinacia oleracea L. Genetics 48:273–282

    PubMed  CAS  Google Scholar 

  • Iizuka M, Janick J (1966) The synthesis of heteromorphic sex chromosomes in spinach. J Hered 57:182–184

    Google Scholar 

  • Jamilena M, Mariotti B, Manzano S (2008) Plant sex chromosomes: molecular structure and function. Cytogenet Genome Res 120:255–264

    Article  PubMed  CAS  Google Scholar 

  • Janick J (1955) Inheritance of sex in tetraploid spinach. Proc Am Soc Hortic Sci 66:361–363

    Google Scholar 

  • Janick J (1998) Hybrids in horticultural crops. In: Lamkey KR, Staub JE (eds) Concepts and breeding of heterosis in crop plants. Crop Science Society of America, pp 45–56

  • Janick J, Stevenson EC (1954) A genetic study of the heterogametic nature of the staminate plant in spinach. Proc Am Soc Hortic Sci 63:444–446

    Google Scholar 

  • Janick J, Stevenson EC (1955a) Environmental influences on sex expression in monoecious lines of spinach. Proc Am Soc Hortic Sci 65:416–422

    Google Scholar 

  • Janick J, Stevenson EC (1955b) Genetics of the monoecious character in spinach. Genetics 40:429–437

    PubMed  CAS  Google Scholar 

  • Janick J, Stevenson EC (1955c) The effects of polyploidy on sex expression in spinach. J Hered 46:150–156

    Google Scholar 

  • Janick J, Mahoney DL, Pfahler PL (1959) The trisomics of Spinacia oleracea. J Hered 50:46–50

    Google Scholar 

  • Katayama Y, Shida S (1956) Development of intersexual flowers and their location on the stalk in spinach. Jpn J Breed 6:19–22

    Google Scholar 

  • Kawasaki S, Kamihara K, Motomura T, Kodama O (2000) Compact high density AFLP enabled high efficiency genome scanning. In: 4th international rice genetics symposium, International Rice Research Institute, p 73

  • Khattak J, Torp A, Andersen S (2006) A genetic linkage map of Spinacia oleracea and localization of a sex determination locus. Euphytica 148:311–318

    Article  CAS  Google Scholar 

  • Koh HJ, Heu MH, McCouch SR (1996) Molecular mapping of the ge(S) gene controlling the super-giant embryo character in rice (Oryza sativa L.). Theor Appl Genet 93:257–261

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lan T, Zhang S, Liu B, Li X, Chen R, Song W (2006) Differentiating sex chromosomes of the dioecious Spinacia oleracea L. (spinach) by FISH of 45S rDNA. Cytogenet Genome Res 175–177

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Mariotti B, Manzano S, Kejnovsky E, Vyskot B, Jamilena M (2009) Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Mol Genet Genomics 281:249–259

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Wang J, Moore P, Paterson A (2007) Sex chromosomes in flowering plants. Am J Bot 141–150

  • Morelock TE, Correll JC (2008) Spinach. In: Prohens J, Nuez F (eds) Vegetables I, pp 189–218

  • Onodera Y, Yonaha I, Niikura S, Yamazaki S, Mikami T (2008) Monoecy and gynomonoecy in Spinacia oleracea L.: morphological and genetic analyses. Sci Hortic 118:266–269

    Article  Google Scholar 

  • Pfent C, Pobursky K, Sather D, Golenberg E (2005) Characterization of SpAPETALA3 and SpPISTILLATA, B class floral identity genes in Spinacia oleracea, and their relationship to sexual dimorphism. Dev Genet Evol 215:132–142

    Article  CAS  Google Scholar 

  • Rosa J (1925) Sex expression in spinach. Hilgardia 1:259–274

    Google Scholar 

  • Sather DN, Golenberg EM (2009) Duplication of AP1 within the Spinacia oleracea L. AP1/FUL clade is followed by rapid amino acid and regulatory evolution. Planta 229:507–521

    Article  PubMed  CAS  Google Scholar 

  • Sather DN, York A, Pobursky K, Golenberg EM (2005) Sequence evolution and sex-specific expression patterns of the C class floral identity gene, SpAGAMOUS, in dioecious Spinacia oleracea L. Planta 284–292

  • Sather DN, Jovanovic M, Golenberg EM (2010) Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism. BMC Plant Biol10

  • Sherry R, Eckard K, Lord E (1993) Flower development in dioecious Spinacia oleracea (Chenopodiaceae). Am J Bot 283–291

  • Telgmann-Rauber A, Jamsari A, Kinney MS, Pires JC, Jung C (2007) Genetic and physical maps around the sex-determining M-locus of the dioecious plant asparagus. Mol Genet Genomics 278:221–234

    Article  PubMed  CAS  Google Scholar 

  • Thompson AE (1954) The extent of natural crossing in inbred monecious spinach lines. Proc Am Soc Hortic Sci 64:405–409

    Google Scholar 

  • Thompson AE (1955) Methods of producing first-generation hybrid seed in spinach. Cornell Agric Exp Sta Mem 336:1–48

    Google Scholar 

  • van der Vossen HAM (1993) Spinacia oleracea L. In: Siemonsma JS, Piluek K (eds) PROSEA, plant resources of South-East Asia. Pudoc Scientific Publishers, Wageningen

    Google Scholar 

  • van der Vossen HAM (2004) Spinacia oleracea L. In: Grubben GJH, Denton OA (eds) PROTA 2: vegetables/legumes. PROTA, Wageningen

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Wang JP, Na JK, Yu QY, Moore RC, Zee F, Huber SC, Ming R (2010) The origin of the non-recombining region of sex chromosomes in Carica and Vasconcellea. Plant J 63:801–810

    Article  PubMed  CAS  Google Scholar 

  • Yin T, DiFazio SP, Gunter LE, Zhang X, Sewell MM, Woolbright SA, Allan GJ, Kelleher CT, Douglas CJ, Wang M, Tuskan GA (2008) Genome structure and emerging evidence of an incipient sex chromosome in Populus. Genome Res 18:422–430

    Article  PubMed  CAS  Google Scholar 

  • Yu QY, Hou S, Feltus FA, Jones MR, Murray JE, Veatch O, Lemke C, Saw JH, Moore RC, Thimmapuram J, Liu L, Moore PH, Alam M, Jiang JM, Paterson AH, Ming R (2008) Low X/Y divergence in four pairs of papaya sex-linked genes. Plant J 53:124–132

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Jules Janick for fruitful discussions. We are grateful to Mino Nakaya for technical assistance. This work was supported by Grants in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Mikami.

Additional information

Communicated by K. Toriyama.

Y. Onodera, I. Yonaha and H. Masumo contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onodera, Y., Yonaha, I., Masumo, H. et al. Mapping of the genes for dioecism and monoecism in Spinacia oleracea L.: evidence that both genes are closely linked. Plant Cell Rep 30, 965–971 (2011). https://doi.org/10.1007/s00299-010-0998-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0998-2

Keywords

Navigation