Skip to main content
Log in

Sexually mature transgenic American chestnut trees via embryogenic suspension-based transformation

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The availability of a system for direct transfer of anti-fungal candidate genes into American chestnut (Castanea dentata), devastated by a fungal blight in the last century, would offer an alternative or supplemental approach to conventional breeding for production of chestnut trees resistant to the blight fungus and other pathogens. By taking advantage of the strong ability of embryogenic American chestnut cultures to proliferate in suspension, a high-throughput Agrobacterium tumefaciens-mediated transformation protocol for stable integration of foreign genes into the tree was established. Proembryogenic masses (PEMs) were co-cultivated with A. tumefaciens strain AGL1 harboring the plasmid pCAMBIA 2301, followed by stringent selection with 50 or 100 mg/l Geneticin. A protocol employing size-fractionation to enrich for small PEMs to use as target material and selection in suspension culture was applied to rapidly produce transgenic events with an average efficiency of four independent transformation events per 50 mg of target tissue and minimal escapes. Mature somatic embryos, representing 18 transgenic events and derived from multiple American chestnut target genotypes, were germinated and over 100 transgenic somatic seedlings were produced and acclimatized to greenhouse conditions. Multiple vigorous transgenic somatic seedlings produced functional staminate flowers within 3 years following regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

EDM:

Embryo development medium

GM:

Germination medium

IMM:

Induction/maintenance medium

PCR:

Polymerase chain reaction

PEM:

Proembryogenic mass

SM:

Selection medium

References

  • Anagnostakis SL (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:23–37

    Article  Google Scholar 

  • Andrade GM, Merkle SA (2005) Enhancement of American chestnut somatic seedling production. Plant Cell Rep 24:326–334

    Article  PubMed  CAS  Google Scholar 

  • Bolton GW, Nester EW, Gordon MP (1986) Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232:983–985

    Article  PubMed  CAS  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvals CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    Article  PubMed  CAS  Google Scholar 

  • Burnham CR (1988) The restoration of the American chestnut. Am Scientist 76:478–487

    Google Scholar 

  • Carraway DT, Wilde HD, Merkle SA (1994) Somatic embryogenesis and gene transfer in American chestnut. J Am Chestnut Found 8(1):29–33

    Google Scholar 

  • Charity J, Klimaszewska K (2005) Persistence of Agrobacterium tumefaciens in transformed conifers. Environ Biosafety Res 4:167–177

    Article  PubMed  CAS  Google Scholar 

  • Corredoira E, Montenegro D, San-Jose MC, Vieitez AM, Ballester A (2004) Agrobacterium-mediated transformation of European chestnut embryogenic cultures. Plant Cell Rep 23:311–318

    Article  PubMed  CAS  Google Scholar 

  • Corredoira E, San-Jose MC, Vieitez AM, Ballester A (2007) Improving genetic transformation of European chestnut and cryopreservation of transgenic lines. Plant Cell Tissue Organ Cult 91:281–288

    Article  CAS  Google Scholar 

  • Crandall BS, Gravatt GF, Ryan MM (1945) Root disease of Castanea species and some coniferous and broadleaf nursery stocks, caused by Phytophthora cinnamomi. Phytopathology 35:162–180

    Google Scholar 

  • Cruz-Hernandez A, Witjaksono LitzRE, Gomez Lim M (1998) Agrobacterium tumefaciens-mediated transformation of embryogenic avocado cultures and regeneration of somatic embryos. Plant Cell Rep 17:497–503

    Article  CAS  Google Scholar 

  • Dana MdlM, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Article  Google Scholar 

  • Finer JJ, McMullin MD (1990) Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep 9:586–589

    Article  Google Scholar 

  • Halperin W (1966) Alternative morphogenetic events in cell suspensions. Am J Bot 53:443–453

    Article  Google Scholar 

  • Han KH, Meilan R, Ma C, Strauss SH (2000) An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus). Plant Cell Rep 19:315–320

    Article  CAS  Google Scholar 

  • Hazel CB, Klein TM, Anis M, Wilde HD, Parrott WA (1998) Growth characteristics and transformability of soybean embryogenic cultures. Plant Cell Rep 17:765–772

    Article  CAS  Google Scholar 

  • Hebard FV (2006) The backcross breeding program of the American Chestnut Foundation. In: Steiner KC, Carlson JE (eds) Restoration of American chestnut to forest lands. Proceedings of a conference and workshop, May 4–6, 2004. The North Carolina Arboretum, Natural Resources Report NPS/NCR/CUE/NRR-2006/001, USDI National Park Service, pp 61–77

  • Holliday CP, Merkle SA (2000) Preservation of American chestnut germplasm by cryostorage of embryogenic cultures. J Am Chestnut Found 14(1):46–52

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Johnson SB, Le HT, Kormanik TL, Merkle SA (2008) Advances in American chestnut somatic seedling production. In: Proceedings of the 2007 joint meeting of the southern forest tree improvement conference and the Western Forest Genetics Association, June 19–22, 2007, Galveston, TX, pp 85–95

  • Klimaszewska K, Lachance D, Pelletier G, Lelu MA, Seguin A (2001) Regeneration of transgenic Picea glauca, P. mariana, and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 37:748–755

    Article  CAS  Google Scholar 

  • Kubisiak TL, Hebard FV, Nelson CD, Zhang J, Bernatzky R, Huang H, Anagnostakis SL, Doudrick RL (1997) Molecular mapping of resistance to blight in an interspecific cross in the genus Castanea. Phytopathology 87:751–759

    Article  PubMed  CAS  Google Scholar 

  • Lane BG (2002) Oxalate, germins, and higher plant pathogens. IUBMB Life 53:67–75

    Article  PubMed  CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    Article  PubMed  CAS  Google Scholar 

  • Levee V, Garin E, Klimaszewska K, Seguin A (1999) Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Mol Breeding 5:429–440

    Article  CAS  Google Scholar 

  • Lichetenstein C, Draper J (1986) Genetic engineering of plants. In: Glover DM (ed) DNA cloning. IRL Press, Washington, DC, pp 67–119

    Google Scholar 

  • Mathews H, Litz RE, Wilde HD, Merkle SA, Wetzstein HY (1992) Stable integration and expression of ß-glucuronidase and NPT II genes in mango somatic embryos. In Vitro Cell Dev Biol 28P:172–178

    CAS  Google Scholar 

  • Maynard CA, Powell WA, Polin-McGuigan LD, Vieitez AM, Ballester A, Corredoira E, Merkle SA, Andrade GM (2008) Chestnut. In: Cole C, Hall TC (eds) A compendium of transgenic crop plants, vol 9. Blackwell, Oxford, pp 169–192

    Google Scholar 

  • McGranahan GH, Leslie CA, Uratsu SL, Martin LA, Dandekar AM (1989) Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Biotechnology 6:800–804

    Google Scholar 

  • Merkle SA, Wiecko AT, Watson-Pauley BA (1991) Somatic embryogenesis in American chestnut. Can J For Res 21:1698–1701

    Article  Google Scholar 

  • Merkle SA, Parrott WA, Flinn BS (1995) Morphogenic aspects of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, pp 155–203

    Google Scholar 

  • Merkle SA, Andrade GM, Nairn CJ, Powell WA, Maynard CA (2007) Restoration of threatened species: a noble cause for transgenic trees. Tree Genet Genomes 3:111–118

    Article  Google Scholar 

  • Păcurar DI, Thordall-Christensen H, Nielson KK, Lenk I (2008) A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon. Transgenic Res 17:965–975

    Article  PubMed  Google Scholar 

  • Paillet FL (2002) Chestnut: history and ecology of a transformed species. J Biogeogr 29:1517–1530

    Article  Google Scholar 

  • Parrott WA, All JN, Adang MJ, Bailey MA, Boerma HR, Stewart CN Jr (1994) Recovery and evaluation of soybean plants transgenic for a Bacillus thuringiensis var. Kurstaki insecticidal gene. In Vitro Cell Dev Biol 30P:144–149

    CAS  Google Scholar 

  • Payne JA, Green RA, Kays SJ (1976) New nut pest: an oriental chestnut gall wasp in North America. Ann Rep North Nut Growers Assoc 67:83–86

    Google Scholar 

  • Polin LD, Liang H, Rothrock RE, Nishii M, Diehl DL, Newhouse AE, Nairn CJ, Powell WA, Maynard CA (2006) Agrobacterium-mediated transformation of American chestnut (Castanea dentata (Marsh.) Borkh.) somatic embryos. Plant Cell Tissue Organ Cult 84:69–79

    Article  CAS  Google Scholar 

  • Powell WA, Catranis CM, Maynard CA (1995) Synthetic antimicrobial peptide design. Mol Plant Microbe Interact 8:792–794

    PubMed  CAS  Google Scholar 

  • Rothrock RE, Polin-Mcguigan LD, Newhouse AE, Powell WA, Maynard CA (2007) Plate flooding as an alternative Agrobacterium-mediated transformation method for American chestnut somatic embryos. Plant Cell Tissue Organ Cult 88:93–99

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sangwan RS, Bourgeois Y, Brown S, Vasseur G, Sangwan-Norreel B (1992) Characterization of competent cells and early events in Agrobacterium-mediated genetic transformation in Arabidopsis thaliana. Planta 188:439–456

    Article  CAS  Google Scholar 

  • Seabra RC, Pais MS (1998) Genetic transformation of European chestnut. Plant Cell Rep 17:177–182

    Article  CAS  Google Scholar 

  • Seguin A (1999) Transgenic trees resistant to microbial pests. For Chron 2:303–304

    Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  • Villemont E, Dubois F, Sangwan RS, Vasseur G, Bougeois Y, Sangwan-Norreel B (1997) Role of the host cell cycle in Agrobacterium-mediated transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer. Planta 201:160–172

    Article  CAS  Google Scholar 

  • Wagner DB, Furnier GR, Saghai-Maroof MA, Williams SM, Dancik BP, Allard RW (1987) Chloroplast DNA polymorphisms in lodegpole and jack pines and their hybrids. Proc Natl Acad Sci USA 84:2097–2100

    Article  PubMed  CAS  Google Scholar 

  • Wang AM, Fan HL, Singsit C, Ozias-Akins P (1998) Transformation of peanut with a soybean vspB promoter-uidA chimeric gene. I. Optimization of a transformation system and analysis of GUS expression in primary transgenic tissues and plants. Physiol Plant 102:38–48

    Article  CAS  Google Scholar 

  • Wheeler N, Sederoff R (2009) Role of genomics in the potential restoration of the American chestnut. Tree Genet Genomes 5:181–187

    Article  Google Scholar 

  • Wilde HD, Meagher RB, Merkle SA (1992) Expression of foreign genes in transgenic yellow-poplar plants. Plant Physiol 98:114–120

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research reported here was supported by ArborGen LLC and the Institute of Forest Biotechnology. The authors would like to thank Paul Montello for help with graphics, John Bond for photography and Steve Pettis for greenhouse assistance. We would also like to thank Tom Kubisiak and Charles Burdine of the USDA Southern Research Station, Wayne Parrott and Barbara Artelt for technical assistance. We thank Fred Hebard of The American Chestnut Foundation and Gary and Lucille Griffin of the American Chestnut Cooperators Foundation for supplying us with American chestnut material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Merkle.

Additional information

Communicated by K. Kamo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, G.M., Nairn, C.J., Le, H.T. et al. Sexually mature transgenic American chestnut trees via embryogenic suspension-based transformation. Plant Cell Rep 28, 1385–1397 (2009). https://doi.org/10.1007/s00299-009-0738-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0738-7

Keywords

Navigation