Skip to main content
Log in

Heterologous expression of Vitreoscilla haemoglobin in barley (Hordeum vulgare)

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The vhb gene encoding Vitreoscilla haemoglobin (VHb) was transferred to barley with the aim of studying the role of oxygen availability in germination and growth. Previous findings indicate that VHb expression improves the efficiency of energy generation during oxygen-limited growth, and germination is known to be an energy demanding growth stage during which the embryos also suffer from oxygen deficiency. When subjected to oxygen deficiency, the roots of vhb-expressing barley plants showed a smaller increase in alcohol dehydrogenase (ADH) activity than those of the control plants. This indicates that VHb plants experienced less severe oxygen deficiency than the control plants, possibly due to the ability of VHb to substitute ADH for recycling NADH and maintaining glycolysis. In contrast to previous findings, we found that constitutive vhb expression did not improve the germination rate of barley kernels in any of the conditions studied. In some cases, vhb expression even slowed down germination slightly. VHb production also appeared to restrict root formation in young seedlings. The adverse effects of VHb on germination and root growth may be related to its ability to scavenge nitric oxide (NO), an important signal molecule in both seed germination and root formation. Because NO has both cytotoxic and stimulating properties, the effect of vhb expression in plants may depend on the level and role of endogenous NO in the conditions studied. VHb production also affected the levels of endogenous barley haemoglobin, which may explain the relatively moderate effects of VHb in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADH:

Alcohol dehydrogenase

Hb:

Barley haemoglobin

NO:

Nitric oxide

SNP:

Sodium nitroprusside

VHb:

Vitreoscilla haemoglobin

References

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221. doi:10.1007/PL00008128

    Article  PubMed  CAS  Google Scholar 

  • Benech-Arnold RL, Gualano N, Leymari J, Côme D, Corbineau F (2006) Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains. J Exp Bot 57:1423–1430. doi:10.1093/jxb/erj122

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Gubler F, Jacobsen JV, Jones RL (2004) Dormancy of Arabidopsis seeds and barley grains can be broken by nitric acid. Planta 219:847–855. doi:10.1007/s00425-004-1282-x

    Article  PubMed  CAS  Google Scholar 

  • Bewley JD, Black M (1994) Seeds—physiology of development and germination, 2nd edn. Plenum Press, New York. ISBN 0-306-44748-7

    Google Scholar 

  • Bollinger CJT, Bailey JE, Kallio PT (2001) Novel hemoglobins to enhance microaerobic growth and substrate utilization in Escherichia coli. Biotechnol Prog 17:798–808. doi:10.1021/bp010091j

    Article  PubMed  CAS  Google Scholar 

  • Chang WWP, Huang L, Shen M, Webster C, Burlingame AL, Roberts JKM (2000) Pattern of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiol 122:295–317

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Bailey JE (1994) Energetic effect of Vitreoscilla hemoglobin expression in Escherichia coli: an on-line 31P NMR and saturation transfer study. Biotechnol Prog 10:360–364. doi:10.1021/bp00028a003

    Article  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218. doi:10.1007/BF01969712

    Article  PubMed  CAS  Google Scholar 

  • Desel C, Krupinska K (2005) The impact of tocochromanols on early seedling development and NO release. J Plant Physiol 162:771–776. doi:10.1016/j.jplph.2005.04.008

    Article  PubMed  CAS  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manach N, Rivoal J, Hill RD (2003a) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35:763–770. doi:10.1046/j.1365-313X.2003.01846.x

    Article  PubMed  CAS  Google Scholar 

  • Dordas C, Rivoal J, Hill RD (2003b) Plant haemoglobins, nitric oxide and hypoxic stress. Ann Bot 91:173–178. doi:10.1093/aob/mcf115

    Article  PubMed  CAS  Google Scholar 

  • Dordas C, Hasinoff BB, Rivoal J, Hill RD (2004) Class-1-hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures. Planta 219:66–72. doi:10.1007/s00425-004-1212-y

    Article  PubMed  CAS  Google Scholar 

  • Duff SMG, Wittenberg JB, Hill RD (1997) Expression, purification, and properties of recombinant barley (Hordeum sp.) hemoglobin: optical spectra and reactions with gaseous ligands. J Biol Chem 272:16746–16752. doi:10.1074/jbc.272.27.16746

    Article  PubMed  CAS  Google Scholar 

  • Duff SMG, Guy PA, Nie X, Durnin DC, Hill RD (1998) Haemoglobin in germinating barley. Seed Sci Res 8:431–436

    CAS  Google Scholar 

  • Farrés J, Kallio PT (2002) Improved cell growth in tobacco suspension cultures expressing Vitreoscilla hemoglobin. Biotechnol Prog 18:229–233. doi:10.1021/bp010159v

    Article  PubMed  CAS  Google Scholar 

  • Frey AD, Farrés J, Bollinger CJT, Kallio PT (2002) Bacterial hemoglobins and flavohemoglobins for alleviation of nitrosative stress in Escherichia coli. Appl Environ Microbiol 68:4835–4840. doi:10.1128/AEM.68.10.4835-4840.2002

    Article  PubMed  CAS  Google Scholar 

  • Frey AD, Kallio PT (2003) Bacterial hemoglobins and flavohemoglobins: vertatile proteins and their impact on microbiology and biotechnology. FEMS Microbiol Rev 27:525–545. doi:10.1016/S0168-6445(03)00056-1

    Article  PubMed  CAS  Google Scholar 

  • Frey AD, Oberle BT, Farrés J, Kallio PT (2004) Expression of Vitreoscilla haemoglobin in tobacco cell cultures relieves nitrosative stress in vivo and protects from NO in vitro. Plant Biotechnol J 2:221–231. doi:10.1111/j.1467-7652.2004.00066.x

    Article  PubMed  CAS  Google Scholar 

  • Gardner PR (2005) Nitric oxide dioxygenase function and mechanism of flavohemoglobin, hemoglobin and myoglobin and their associated reductases. J Inorg Biochem 99:247–266. doi:10.1016/j.jinorgbio.2004.10.003

    Article  PubMed  CAS  Google Scholar 

  • Giangiacomo L, Mattu M, Arcovito A, Bellenchi G, Bolognesi M, Ascenzi P, Boffi A (2001) Monomer-dimer equilibrium and oxygen binding properties of ferrous Vitreoscilla hemoglobin. Biochemistry 40:9311–9316. doi:10.1021/bi0101143

    Article  PubMed  CAS  Google Scholar 

  • Gouvêa CMCP, Souza JF, Magalhães CAN, Martinsm IS (1997) NP·-releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21:183–187. doi:10.1023/A:1005837012203

    Article  Google Scholar 

  • Guglielminetti L, Yamaguchi J, Perata P, Alpi A (1995) Amylolytic activities in cereal seeds under aerobic and anaerobic conditions. Plant Physiol 109:1069–1076

    PubMed  CAS  Google Scholar 

  • Häggman H, Frey AD, Ryynänen L, Aronen T, Julkunen-Tiitto R, Tiimonen H, Pihakaski-Maunsbach K, Jokipii S, Chen X, Kallio PT (2003) Expression of Vitreoscilla hemoglobin in hybrid aspen (Populus tremula x tremuloides). Plant Biotechnol J 1:287–300. doi:10.1046/j.1467-7652.2003.00027.x

    Article  PubMed  Google Scholar 

  • Hanson AD, Jacobsen JV, Zwar JA (1984) Regulated expression of three alcohol dehydrogenase genes in barley aleurone layers. Plant Physiol 75:573–581

    Article  PubMed  CAS  Google Scholar 

  • Holmberg N, Lilius G, Bailey JE, Bülow L (1997) Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production. Nat Biotechnol 15:244–247. doi:10.1038/nbt0397-244

    Article  PubMed  CAS  Google Scholar 

  • Højberg O, Sørensen J (1993) Microgradients of microbial oxygen consumption in a barley rhizosphere model system. Appl Environ Microbiol 59:431–437

    PubMed  Google Scholar 

  • Igamberdiev AU, Hill RD (2004) Nitrate, NO and haemoglobin in plant adaption to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55:2473–2482. doi:10.1093/jxb/erh272

    Article  PubMed  CAS  Google Scholar 

  • Kallio PT, Kim D-J, Tsai PS, Bailey JE (1994) Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions. Eur J Biochem 219:201–208. doi:10.1111/j.1432-1033.1994.tb19931.x

    Article  PubMed  CAS  Google Scholar 

  • Kennedy RA, Rumpho ME, Fox TC (1992) Anaerobic metabolism in plants. Plant Physiol 100:1–6

    PubMed  CAS  Google Scholar 

  • Li X, Peng R-H, Fan H-Q, Xiong A-S, Yao Q-H, Cheng Z-M, Li Y (2005) Vitreoscilla haemoglobin overexpression increases submergence tolerance in cabbage. Plant Cell Rep 23:710–715. doi:10.1007/s00299-004-0872-1

    Article  PubMed  CAS  Google Scholar 

  • Murray HG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  PubMed  CAS  Google Scholar 

  • Nuutila AM, Ritala A, Skadsen R, Mannonen L, Kauppinen V (1999) Expression of thermotolerant endo-(1,4,)-β-glucanase in transgenic barley seeds during germination. Plant Mol Biol 41:777–783. doi:10.1023/A:1006318206471

    Article  PubMed  CAS  Google Scholar 

  • Olsen FL (1987) Induction of microspore embryogenesis in cultured anthers of Hordeum vulgare. The effect of ammonium nitrate, glutamine and asparagine as nitrogen sources. Carlsberg Res Commun 52:393–404

    Article  CAS  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  PubMed  CAS  Google Scholar 

  • Roberts JKM, Callis J, Wemmer D, Walbot V, Jardetzky O (1984) Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc Natl Acad Sci USA 81:3379–3383

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sarath G, Bethke PC, Jones R, Baird LM, Hou G, Mitchell RB (2006) Nitric oxide accelerates seed germination in warm-season grasses. Planta 223:1154–1164. doi:10.1007/s00425-005-0162-3

    Article  PubMed  CAS  Google Scholar 

  • Sowa AW, Duff SMG, Guy PA, Hill RD (1998) Altering hemoglobin levels changes energy status in maize cells under hypoxia. Proc Natl Acad Sci USA 95:10317–10321. doi:10.1073/pnas.95.17.10317

    Article  PubMed  CAS  Google Scholar 

  • Taylor ER, Nie XZ, MacGregor AW, Hill RD (1994) A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Mol Biol 24:853–862. doi:10.1007/BF00014440

    Article  PubMed  CAS  Google Scholar 

  • Tsai PS, Nägeli M, Bailey JE (1996) Intracellular expression of Vitreoscilla hemoglobin modifies microaerobic Escherichia coli metabolism through elevated concentration and specific activity of cytochrome o. Biotechnol Bioeng 49:151–160. doi:10.1002/(SICI)1097-0290(19960120)49:2 < 151::AID-BIT4 > 3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  • Tsai PS, Rao G, Bailey JE (1995) Improvement of Escherichia coli microaerobic oxygen-metabolism by Vitreoscilla haemoglobin: new insight from NAD(P)H fluorescence and culture redox potential. Biotechnol Bioeng 47:347–354

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi S, Matsubara H, Webster DA (1986) Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322:481–483. doi:10.1038/322481a0

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Lemaux PG (1994) Generation of large number of independently transformed fertile barley plants. Plant Physiol 104:37–48

    PubMed  CAS  Google Scholar 

  • Wilhelmson A, Kallio PT, Oksman-Caldentey K-M, Nuutila AM (2005) Expression of Vitreoscilla hemoglobin enhances growth of Hyoscyamus muticus hairy root cultures. Planta Med 71:48–53. doi:10.1055/s-2005-837750

    Article  PubMed  CAS  Google Scholar 

  • Wilhelmson A, Häkkinen ST, Kallio PT, Oksman-Caldentey K-M, Nuutila AM (2006a) Heterologous expression of Vitreoscilla hemoglobin (VHb) and cultivation conditions affect the alkaloid profile of Hyoscyamus muticus hairy roots. Biotechnol Prog 22:350–358. doi:10.1021/bp050322c

    Article  PubMed  CAS  Google Scholar 

  • Wilhelmson A, Laitila A, Vilpola A, Olkku J, Kotaviita E, Fagerstedt K, Home S (2006b) Oxygen deficiency in barley (Hordeum vulgare) grain during malting. J Agric Food Chem 54:409–416. doi:10.1021/jf0521505

    Article  PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119. doi:10.1016/0378-1119(85)90120-9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors warmly wish to thank Sirkka-Liisa Kanervo, Tarja Wikström, Tuuli Teikari, Marica Björkman and Ritva Heinonen for excellent technical assistance. The Academy of Finland (projects 73572 and 106528), the Raisio Group Research Foundation and the Finnish Scientific Foundation for Women are gratefully acknowledged for funding of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Wilhelmson.

Additional information

Communicated by W. Harwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelmson, A., Kallio, P.T., Oksman-Caldentey, KM. et al. Heterologous expression of Vitreoscilla haemoglobin in barley (Hordeum vulgare). Plant Cell Rep 26, 1773–1783 (2007). https://doi.org/10.1007/s00299-007-0393-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0393-9

Keywords

Navigation