Skip to main content
Log in

Vitreoscilla hemoglobin overexpression increases submergence tolerance in cabbage

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Agrobacterium tumefaciens was used to deliver the vhb gene into cabbage (Brassica oleracea var. Cabitata) cv. Xiaguang’s parent line, 103. Using hypocotyls and cotyledon petioles as explants for infection, we obtained a transformation efficiency of 3–5% based on the number of transgenic shoots produced from the number of explants used for infection. Molecular analysis indicated that the vhb gene was stably integrated into the cabbage genome and that the vhb gene was expressed at the RNA level. Characterization of the vhb over-expressing transgenic plants revealed that transgenic seeds germinated faster than the wildtype controls. More importantly, the transgenic plants showed tolerance to a prolonged submergence treatment, suggesting that the vhb gene may provide an excellent tool for creation of submergence/flooding-tolerant cultivars of agriculturally important crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AS:

3,5-Dimethoxy-4-hydroxy-acetophenone

BA:

6-Benzylaminopurine

Cef:

Cefotaxime

GUS:

β-Glucuronidase

IBA:

Indolebutyric acid

ZT:

Zeatin

References

  • Allen GC, Hall GJ, Michalowski S, Newman W, Spiker S, Weissinger AK, Thompson WF (1996) High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobacco. Plant Cell 8:899–913

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Hughes DE, Bailey JE (1994) Intracellular expression of Vitreoscilla hemoglobin alters the aerobic metabolism of Saccharomyces cerevisiae. Biotechnol Prog 10:308–313

    CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Dikshit KL, Webster DA (1988) Cloning, characterization and expression of the bacterial hemoglobin gene from Vitreoscilla in Escherichia coli. Gene 70:377–386

    Article  CAS  PubMed  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J, Hill RD (2003) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35:763–770

    Article  CAS  PubMed  Google Scholar 

  • Fang H-J, Li D-L, Wang G-L (1997) An insect resistant transgenic cabbage plant with Cowpea Trypsin inhibitor (CPT) gene. Acta Bot Sin 39:940–945

    CAS  Google Scholar 

  • Hardison R (1998) Hemoglobins from bacteria to man: evolution of different patterns of gene expression. Exp Biol 201:1099–1117

    CAS  PubMed  Google Scholar 

  • Holmberg N, Lilius G, Bailey JE (1997) Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production. Nat Biotechnol 15:244–247

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Kallio PT, Kim DJ, Tsai PS (1994) Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions. Eur J Biochem 219:201–208

    CAS  PubMed  Google Scholar 

  • Khosla C, Bailey JE (1988) The Vitreoscilla hemoglobin gene: molecular cloning, nucleotide sequence and genetic expression in Escherichia coli. Mol Genet 214:158–161

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Planta 15:473–497

    CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    CAS  PubMed  Google Scholar 

  • Nauerby B, Billing K, Wyndaele R (1997) Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Sci 123:169–177

    Article  CAS  Google Scholar 

  • Peng R-H, Huang X-M, Li X, Shun A-J, Yao Q-H, Peng Y-L (2001) Construction of plant binary expression vector containing intron-kanamycin gene transformation in Nicotiana tabacum. Acta Phytophysiol Sin 27:55–60

    Google Scholar 

  • Plesse B, Durr A, Marbach J, Genschik P, Fleck J (1997) Identification of a new cis-regulatory element in a Nicotiana tabacum polyubiquitin gene promoter. Mol Gen Genet 254:258–266

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 31–58

    Google Scholar 

  • Wakabayashi S, Matsubara H, Webster DA (1986) Primary sequence of a dimeric bacterial hemoglobin from Vitreoscilla. Nature 322:481–483

    CAS  Google Scholar 

  • Xiong A-S, Peng R-H, Chen J-M, Li X, Fan H-Q, Yao Q-H (2000) Studies on synthesis of Vitreoscilla hemoglobin gene by PCR technique and its effect in prokaryotic organism. Acta Agric 16:19–24

    Google Scholar 

  • Xue Y-L, Xia Z-A (1985) A manual of plant physiological experiment. Shanghai Science and Technology, Shanghai, pp 10–13

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Commission of Sciences, Shanghai, the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Hong Yao.

Additional information

Communicated by I.S. Chung

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Peng, RH., Fan, HQ. et al. Vitreoscilla hemoglobin overexpression increases submergence tolerance in cabbage. Plant Cell Rep 23, 710–715 (2005). https://doi.org/10.1007/s00299-004-0872-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0872-1

Keywords

Navigation