Skip to main content
Log in

Modulation of Barley (Hordeum vulgare L.) Grain Protein Sink-Source Relations Towards Human Epidermal Growth Factor Instead of B-hordein Storage Protein

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Seeds have evolutionarily developed to store protein without immediately degrading it and constitute ideal tissues for recombinant protein storage. Unfortunately, the production of recombinant protein in seeds is compromised by low yield as compared to other heterologous expression systems. In order to improve the yield of the human epidermal growth factor (EGF) in barley, protein sink-source relations in the developing grain were modulated towards EGF instead of the barley storage protein. The EGF gene, under the control of a B-hordein and a seed-specific oat globulin promoter, was introduced by crossing EGF lines into the Risø 56 mutant deficient in B-hordein storage protein synthesis. Offspring plants were analysed for EGF and Hordein expression and for expression of the unfolded protein response (UPR) genes PDI and CRT to monitor changes in ER stress levels. EGF content was increased significantly in the mature grain of homozygous offspring and PDI and CRT gene expressions were upregulated. We demonstrate, for the first time in barley, that replacement of an abundant seed storage protein with a specific heterologous protein driven by the promoter of the removed gene can accelerate the production of a specific heterologous protein in barley grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Twyman, R. M., Stoger, E., Schillberg, S., Christou, P., & Fischer, R. (2003). Molecular farming in plants: Host systems and expression technology. Trends in Biotechnology, 21, 570–578. https://doi.org/10.1016/j.tibtech.2003.10.002.

    Article  CAS  PubMed  Google Scholar 

  2. Gomord, V., & Faye, L. C. (2004). Posttranslational modification of therapeutic proteins in plants. Current Opinion in Plant Biology, 7, 171–181. https://doi.org/10.1016/j.pbi.2004.01.015.

    Article  CAS  PubMed  Google Scholar 

  3. Sethuraman, N., & Stadheim, T. A. (2006). Challenges in therapeutic glycoprotein production. Current Opinion in Biotechnology, 17, 341–346. https://doi.org/10.1016/j.copbio.2006.06.010.

    Article  CAS  PubMed  Google Scholar 

  4. Giddings, G., Allison, G., Brooks, D., & Carter, A. (2000). Transgenic plants as factories for biopharmaceuticals. Nature Biotechnology, 18, 1151. https://doi.org/10.1038/81132.

    Article  CAS  PubMed  Google Scholar 

  5. Stoger, E., Ma, J. K. C., Fischer, R., & Christou, P. (2005). Sowing the seeds of success: Pharmaceutical proteins from plants. Current Opinion in Biotechnology, 16, 167–173. https://doi.org/10.1016/j.copbio.2005.01.005.

    Article  CAS  PubMed  Google Scholar 

  6. Osborne, T. B. (1924). The vegetable proteins. Monographs on biochemistry (2nd ed., p. 154). London: Longmans green and Co.

    Google Scholar 

  7. Horvath, H., Huang, J., Wong, O., Kohl, E., Okita, T., Kannangara, C. G., et al. (2000). The production of recombinant proteins in transgenic barley grains. Proceedings of the National Academy of Sciences, 97, 1914. https://doi.org/10.1073/pnas.030527497.

    Article  CAS  Google Scholar 

  8. Shewry, P. R. (1993). Barley seed proteins. In A. W. MacGregor & R. S. Bahatty (Eds.), Barley, chemistry and technology. Saint Paul: American Association of Cereal Chemists.

    Google Scholar 

  9. Shewry, P. R., Kreis, M., Parmar, S., Lew, E. J. L., & Kasarda, D. D. (1985). Identification of γ-type hordeins in barley. FEBS Letters, 190, 61–64. https://doi.org/10.1016/0014-5793(85)80427-0.

    Article  CAS  Google Scholar 

  10. Ullrich, S. E. (2010). Barley: Production, improvement, and uses. New York: Wiley.

    Book  Google Scholar 

  11. Carpenter, G., & Cohen, S. (1990). Epidermal growth factor. Journal of Biological Chemistry, 265, 7709–7712.

    Article  CAS  Google Scholar 

  12. Normanno, N., et al. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366, 2–16. https://doi.org/10.1016/j.gene.2005.10.018.

    Article  CAS  PubMed  Google Scholar 

  13. Witsch, E., Sela, M., & Yarden, Y. (2010). Roles for growth factors in cancer progression. Physiology., 25, 85–101. https://doi.org/10.1152/physiol.00045.2009.

    Article  CAS  PubMed  Google Scholar 

  14. Hansen, M., Lange, M., Friis, C., Dionisio, G., Holm, P. B., & Vincze, E. (2007). Antisense-mediated suppression of C-hordein biosynthesis in the barley grain results in correlated changes in the transcriptome, protein profile, and amino acid composition. Journal of Experimental Botany, 58, 3987–3995. https://doi.org/10.1093/jxb/erm254.

    Article  CAS  PubMed  Google Scholar 

  15. Doll, H. (1980). A nearly non-functional mutant allele of the storage protein locus Hor2 in Barley. Hereditas, 93, 217–222.

    Article  CAS  Google Scholar 

  16. Kreis, M., Shewry, P. R., Forde, B. G., Rahman, S., & Miflin, B. J. (1983). Molecular analysis of a mutation conferring the high-lysine phenotype on the grain of Barley (Hordeum-Vulgare). Cell, 34, 161–167. https://doi.org/10.1016/0092-8674(83)90146-0.

    Article  CAS  PubMed  Google Scholar 

  17. Furtado, A., Henry, R. J., & Pellegrineschi, A. (2009). Analysis of promoters in transgenic barley and wheat. Plant Biotechnology Journal, 7, 240–253. https://doi.org/10.1111/j.1467-7652.2008.00394.x.

    Article  CAS  PubMed  Google Scholar 

  18. Vickers, C., Xue, G., & Gresshoff, M. P. (2006). A novel cis-acting element, ESP, contributes to high-level endosperm-specific expression in an oat globulin promoter. Plant Molecular Biology. https://doi.org/10.1007/s11103-006-9014-1.

    Article  PubMed  Google Scholar 

  19. Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162, 156–159. https://doi.org/10.1016/0003-2697(87)90021-2.

    Article  CAS  PubMed  Google Scholar 

  20. Bowrin, V., Rouse-Miller, J., Sutton, F., & Sirju-Charran, G. (2013). Formamide-based RNA isolation at above zero temperatures from high starch cassava tubers. Phytochemical Analysis, 24, 93–96. https://doi.org/10.1002/pca.2390.

    Article  CAS  PubMed  Google Scholar 

  21. Kaczmarczyk, A., Bowra, S., Elek, Z., & Vincze, E. (2012). Quantitative RT-PCR based platform for rapid quantification of the transcripts of highly homologous multigene families and their members during grain development. BMC Plant Biology, 12, 184. https://doi.org/10.1186/1471-2229-12-184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Munoz-Huerta, R. F., Guevara-Gonzalez, R. G., Contreras-Medina, L. M., Torres-Pacheco, I., Prado-Olivarez, J., & Ocampo-Velazquez, R. V. (2013). A review of methods for sensing the nitrogen status in plants: Advantages, disadvantages and recent advances. Sensors, 13, 10823–10843. https://doi.org/10.3390/s130810823.

    Article  CAS  PubMed  Google Scholar 

  23. Qi, J. C., Zhang, G. P., & Zhou, M. X. (2006). Protein and hordein content in barley seeds as affected by nitrogen level and their relationship to beta-amylase activity. Journal of Cereal Science, 43, 102–107. https://doi.org/10.1016/j.jcs.2005.08.005.

    Article  CAS  Google Scholar 

  24. Lange, M., Vincze, E., Wieser, H., Schjoerring, J. K., & Holm, P. B. (2007). Suppression of C-hordein synthesis in barley by antisense constructs results in a more balanced amino acid composition. Journal of Agriculture and Food Chemistry, 55, 6074–6081. https://doi.org/10.1021/jf0709505.

    Article  CAS  Google Scholar 

  25. Hohenblum, H., Gasser, B., Maurer, M., Borth, N., & Mattanovich, D. (2004). Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnology and Bioengineering, 85, 367–375. https://doi.org/10.1002/bit.10904.

    Article  CAS  PubMed  Google Scholar 

  26. Mattanovich, D., Gasser, B., Hohenblum, H., & Sauer, M. (2004). Stress in recombinant protein producing yeasts. Journal of Biotechnology, 113, 121–135. https://doi.org/10.1016/j.jbiotec.2004.04.035.

    Article  CAS  PubMed  Google Scholar 

  27. Song, I., Kang, Y., Lee, Y. K., Myung, S. C., & Ko, K. (2018). Endoplasmic reticulum retention motif fused to recombinant anti-cancer monoclonal antibody (mAb) CO17-1A affects mAb expression and plant stress response. PLoS ONE. https://doi.org/10.1371/journal.pone.0198978.

    Article  PubMed  PubMed Central  Google Scholar 

  28. de Ruijter, J. C., Koskela, E. V., Nandania, J., Frey, A. D., & Velagapudi, V. (2018). Understanding the metabolic burden of recombinant antibody production in Saccharomyces cerevisiae using a quantitative metabolomics approach. Yeast, 35, 331–341. https://doi.org/10.1002/yea.3298.

    Article  CAS  PubMed  Google Scholar 

  29. Pieper, L. A., Strotbek, M., Wenger, T., Olayioye, M. A., & Hausser, A. (2017). ATF6-based fine-tuning of the unfolded protein response enhances therapeutic antibody productivity of Chinese hamster ovary cells. Biotechnology and Bioengineering, 114, 1310–1318. https://doi.org/10.1002/bit.26263.

    Article  CAS  PubMed  Google Scholar 

  30. Thomas, D. R., & Walmsley, A. M. (2015). The effect of the unfolded protein response on the production of recombinant proteins in plants. Plant Cell Reports, 34, 179–187. https://doi.org/10.1007/s00299-014-1680-x.

    Article  CAS  PubMed  Google Scholar 

  31. Williams, D. B. (2006). Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. Journal of Cell Science, 119, 615. https://doi.org/10.1242/jcs.02856.

    Article  CAS  PubMed  Google Scholar 

  32. Han, X., et al. (2012). The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice. Journal of Experimental Botany, 63, 121–130. https://doi.org/10.1093/jxb/err262.

    Article  CAS  PubMed  Google Scholar 

  33. Kim, Y. J., Yeu, S. Y., Park, B. S., Koh, H.-J., Song, J. T., & Seo, H. S. (2012). Protein disulfide isomerase-like protein 1–1 controls endosperm development through regulation of the amount and composition of seed proteins in rice. PLoS ONE, 7, e44493. https://doi.org/10.1371/journal.pone.0044493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roustan, V., et al. (2018). Microscopic and proteomic analysis of dissected developing barley endosperm layers reveals the starchy endosperm as prominent storage tissue for ER-derived hordeins alongside the accumulation of Barley protein disulfide isomerase (HvPDIL1-1). Frontiers in Plant Science. https://doi.org/10.3389/fpls.2018.01248.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Satoh-Cruz, M., et al. (2010). Protein disulfide Isomerase Like 1–1 participates in the maturation of proglutelin within the endoplasmic reticulum in rice endosperm. Plant and Cell Physiology, 51, 1581–1593. https://doi.org/10.1093/pcp/pcq098.

    Article  CAS  PubMed  Google Scholar 

  36. Habibi, P., Prado, G. S., Pelegrini, P. B., Hefferon, K. L., Soccol, C. R., & Grossi-de-Sa, M. F. (2017). Optimization of inside and outside factors to improve recombinant protein yield in plant. Plant Cell Tissue and Organ Culture, 130, 449–467. https://doi.org/10.1007/s11240-017-1240-5.

    Article  CAS  Google Scholar 

  37. Ullrich, K. K., Hiss, M., & Rensing, S. A. (2015). Means to optimize protein expression in transgenic plants. Current Opinion in Biotechnology, 32, 61–67. https://doi.org/10.1016/j.copbio.2014.11.011.

    Article  CAS  PubMed  Google Scholar 

  38. Tada, Y., Utsumi, S., & Takaiwa, F. (2003). Foreign gene products can be enhanced by introduction into low storage protein mutants. Plant Biotechnology Journal, 1, 411–422. https://doi.org/10.1046/j.1467-7652.2003.00038.x.

    Article  CAS  PubMed  Google Scholar 

  39. Yang, L. J., Hirose, S., Takahashi, H., Kawakatsu, T., & Takaiwa, F. (2012). Recombinant protein yield in rice seed is enhanced by specific suppression of endogenous seed proteins at the same deposit site. Plant Biotechnology Journal, 10, 1035–1045. https://doi.org/10.1111/j.1467-7652.2012.00731.x.

    Article  CAS  PubMed  Google Scholar 

  40. Torrent, M., et al. (2009). Eukaryotic protein production in designed storage organelles. BMC Biology, 7, 5. https://doi.org/10.1186/1741-7007-7-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morgenfeld, M. M., Vater, C. F., Alfano, E. F., Boccardo, N. A., & Bravo-Almonacid, F. F. (2020). Translocation from the chloroplast stroma into the thylakoid lumen allows expression of recombinant epidermal growth factor in transplastomic tobacco plants. Transgenic Research, 29, 295–305. https://doi.org/10.1007/s11248-020-00199-7.

    Article  CAS  PubMed  Google Scholar 

  42. Dinnis, D. M., & James, D. C. (2005). Engineering mammalian cell factories for improved recombinant monoclonal antibody production: Lessons from nature? Biotechnology and Bioengineering, 91, 180–189. https://doi.org/10.1002/bit.20499.

    Article  CAS  PubMed  Google Scholar 

  43. Fischer, S., et al. (2014). A functional high-content miRNA screen identifies miR-30 family to boost recombinant protein production in CHO cells. Biotechnology Journal, 9, 1279–1292. https://doi.org/10.1002/biot.201400306.

    Article  CAS  PubMed  Google Scholar 

  44. Gasser, B., Maurer, M., Gach, J., Kunert, R., & Mattanovich, D. (2006). Engineering of Pichia pastoris for improved production of antibody fragments. Biotechnology and Bioengineering, 94, 353–361. https://doi.org/10.1002/bit.20851.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Brinch-Pedersen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1046 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panting, M., Holme, I.B., Björnsson, J.M. et al. Modulation of Barley (Hordeum vulgare L.) Grain Protein Sink-Source Relations Towards Human Epidermal Growth Factor Instead of B-hordein Storage Protein. Mol Biotechnol 63, 13–23 (2021). https://doi.org/10.1007/s12033-020-00279-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00279-3

Keywords

Navigation